
•
Introduction

to Computing

DICK SMITH

VZ200
Personal

Colour Compute r

Introduction to
Computing

Using your VZ-200
Personal Colour Computer!

Written and illustrated
by Toni Louise Henson

FIRST EDITION, 1983

National Library of Australia Card No.
and /SAN 0 949772 24 0

Copyright 	1983 by Dick Smith Management Pty Ltd,
Cnr Lane Cove and Waterloo Roads, NORTH RYDE NSW 2113
Australia.

All rights reserved. Reproduction or use of any part of the
editorial or pictorial content of this publication in any
manner is prohibited without written permission from the
publisher.

No patent liability is assumed with respect to use of the
information contained herein. While every precaution has
been taken in the preparation of this book the publisher
assumes no responsibility for errors or omissions, nor can
any liability be accepted for damages resulting from the
use of the programs contained herein.

FIRST EDITION published in 1983 by Dick Smith Management
Pty Ltd.

PRINTED IN AUSTRALIA

Table of Contents
Chapter 1: 	Tne Ancestry of a Computer 	

Chapter 2: 	Bringing Your VZ-200 to Life 	 7

Chapter 3: 	Programming in a Nutshell 	 10

Chapter 4: 	Let's get Started (our first program!).. 	14

OK...Nobody's Perfect!: Editing 	 21

Chapter 5: 	Now for a little mathemagici 	 25

Chapter 6: 	Constants & Variables 	 31

Chapter 7: 	More Mathemag 1c 	 36

Chapter 8: 	Making Decisions 	 42

Chapter 9: 	Just Playing Around 	 47

Chapter 10: Still Playing Around' 	 53

Chapter 11: Telling your computer 'where to get off"! 	 58

Chapter 12: Still Looping (Using FOE-TO-NEXT) 	62

Chapter-13: Sort of 'Chapter 12 continued9 1 	 66

Chapter 14: Programs Within Programs 	 72

Chapter 15: Just Stringing You Along 	 79

Chapter 16: A New Way of Storing Variables 	 83

Chapter 17: A Bit More about DATA & READ 	 90

Chapter 18: Music To Your Ears 	 93

From Sounds...to Songs: More fun with SOUND 	 100

Chapter 19: Great Tricks with Graphics 	 103

Chapter 20: Our Very Last Words 	 110

Appendix A: How to make your VZ-200 love you! 	 112

Appendix B: The BASIC words we've learned 	 113

Appendix C: Reserved words 	 114

Chapter 1
The Ancestry of a Computer

Isn't it exciting? You've just brought your brand new
V2-200 personal computer home. And naturally the first
thing you want to know is how to use it. Well, we'll get
started on that in just a moment. But first, let's make
sure you know exactly what that new machine of yours is!

Everyone knows that computers are electronic brains, right?

No, wrong!
They don't really have brains at all.

Forget about whatever you've seen in movies...amazing
machines that hold intelligent conversations, have ideas or
plot. to take over the world. A computer is more like a
trained parrot...you can teach it to do tricks and obey
commands, and even "talk" to you. But it certainly can't
think like you and /I

That's what a computer isn't. To explain exactly what a
computer is, let's take a quick look at your little
VZ-200's ancestry.

From the beginning of history, man
has been looking around for ways
to make his life easier. He
discovered that there were limits
to what his body could do...and so
he began inventing ways to extend
his physical capabilities.

The caveman is a good example. Ac
some stage he discovered chat he
could hit something much harder if
he used a rock instead of his bare
hands. Which made the hitting
Process easier (and less
painful!) •

As the ages passed, man invented a
multitude of "helpers" to extend
has body's limited abilities. When
he eventually learned to talk, he
gave these nelpers a name: he
called them "tools".

Today, humans rely on many tools. A car, for example, is a
tool to help move us along mucn faster than our legs can.

A telephone is a tool to help us talk to someone much
further away than our voices can shout.

A microscope is a tool to help us see objects far smaller

5

than our eyes can detect without its help.

And a computer is a tool to help us remember much more, and
do calculations must raster, than our brain can manage on
its own.

0 %.
Remember the caveman and his hammer?
Over the years his descendants improved
on the rock idea...by adding a nandle,
changing the shape, using metal instead
of stone.

Our modern aids evolved in pretty much
the same way. In the case of the
computer, it started way back with the
ancient Chinese abacus!

What we've really been trying to say is
this: Don't ever be scared of your
V2-2001

Just remember that it's nothing but a tool co extend your
brain's abilities! It can't think without your help; it
hasn't any intelligence of its own; and it's certainly not
going to laugh at you if you do something wrong!

And while we're doing some remembering, here's another
point that's well worth bearing in mind:

No matter what you put into your little computer, you can't
hurt it! You can play around with it, type in as much
nonsense as you like...but you'll never, never get yourself
into a situation that you can't get out of. 'Cause if worst
comes to worst, all you have to do is turn it off. And
start again! So please, feel free to experiment. Why wonder
what would happen if you pressed that button...when you can
try it and see?!

6

Chapter 2
Bringing your VZ-200 to life!

io co 	 at ue your computer,
you'd have to turn your
television set off. (Oh
yee...if som 	e happens to
be watehiu it you'd better
ask first!)

At the back of the
television, you'll find a
cable that conneeta the set
to the aerial. This is how
information from a
television station ie
received.

dust at the moment,
we w

info
 nt our t 	to

receive 	 rmation from the
V1-200'
So) Disconnect the et NZ
cable from its socket. NoW,
replace it with the thick,
single cord (it's in the bo
seur computer came in . The
fatten end of this cord
goes in the hole.

Well, that takes care of one
end of the sable, The other
end goes into the furthest
right-hand sochet at
back of the VT-200. Ilf you
look closely, you'll see
"TV" written beneath the
hole!)

in your computer's box,
there should also be a black
Goa with a thin cord
attached. This eery
strange-looking devise is
called a "power adaptor"...
because it "adapts" the
electric current from ¢n
ordinary power-point, to
suit the VZ-200't need».
(Your computer, you see, is
rather fussy about the sort
of power that you feed it!)

First, plug the black box
into a power-point. Pone
that? Right...now, at the
end of that long, thin cable
you'll find a little plug.
Duel' it into the furthest
19.Ft-hand socket at the back
of your VT-200. (Mir, hole
has writing under it too --
it says "DC9V"

Turn your computer on by
pressing the switch on the
left-hand side. (if
everything's ok, the little
red power light on the top
of the OS-20,0 should begin
to glow.)

itch y
o e. A)

ecto

7

FINISHED ALREADY!
Now, everything's all set up for operation. And look at
that! If you've done everything just right, your VZ-200
will be talking to you already...saying it's READY to
listen to whatever you tell it.

You should also be able to see the cursor. No, that's not
someone who swears a lot! It's the flashing green square on
the third line, and it's there to tell you exactly where
You are on the screen.

If your VZ-200 isn't giving you a READY message, don't
worry. Go back and make sure the connections aren't loose,
or that the cords are in the right sockets.

ONE BIG DIFFERENCE BETWEEN COMPUTERS & HUMANS

When human beings talk to one another, they need to use two
things:

Ears to near what's being said, and
A Mouth to give answers, ask questions and so on.

Take a look at your VZ-200. You certainly won't see a pair
of ears and a mouth like yours...but computers do have
things to do much the same job!

The VZ-200's keys are its "ears". When you type in
questions or instructions, it "hears" you. And when the
VZ-200 wants to talk back to you, its "moutn" is the
display screen (in this case, your TV set!).

Can you guess what this means? Right--to hold computer
conversations, you'll nave to use your senses a little
differently to the way you usually do.

In other words, when you talk to a computer your fingers
become your voice, and your eyes become your ears!

"BUT HOW DO I USE THE KEYBOARD?"

If at this stage all those keys on your VZ-200 look a
little confusing, don't worry. Firstly, let's call the
whole section where the keys are "the keyboard". Secondly,
let's find out how simple keyboards are to understand!

There are a whole lot of letters, numerals, symbols,
commands and so on that your computer understands. Of
course, we could nave given each one of these a key all to
itself. But that would have made the V2-200's keyboard
very, very crowded!

We thought it was a much better idea to give some keys more
tnan one job. These are called "multi-function" keys...and
they may be able to do as many as four things!

To snow you exactly now this works, let's
pick any old key. "P" will do nicely. On the
keyboard it looks something like this:

NOT
To Wt Holei doe, lomxq

ntease
the key.

TO SE:
pC.T.75 the ke

PRINT

As you can see, there are two symbols on the key itself.
Want the letter "P"? Easy--just press the P key!
If you want the "I" symbol, first find the key
marked 	 (It's in the bottom left-hand corner
of the keyboard). Got it? Now, hold it down while
you press the P key.

There are two more commands written above and below the P
key.

To get "PAINT ", hold down the P.M, key (it's right
above SHIFT) while you Press P.
If it's "NOT" you're after, here's two things to
remember: 1. Hold down 	while you press the key
marked P1ETURNI . Then let 	o of the NETNANI keyl

2. Now type P.

The same rules work for every key with more than one job to
do. Just remember that

(Oh, by the way--those funny box-shaped symbols on some of
the keys are called "graphics characters". We'll be using
them later, when we learn to draw pictures on the screen..)

9

Chapter 3
Programming in a Nutshell!
"Computer Programming", we say.

"Help!" you think. Well, that's a very natural reaction to
something you don't know much about!

Wait! Good news! It's not nearly so complex as you've
always thought...in fact, it's really very, very easy to
understand. Especially if you imagine it like this:

Suppose you're about to start a dot-to-dot picture puzzle
(we all know how easy they are!). You know that all you
nave to do is start at the first step (that's the dot
labelled "1"). Then move your pen to dot number two, then
dot number three, and so on until you've reacned the last
number in the puzzle.

Nothing hard about that, is there? All you've been doing is
following a set of steps that somebody has designed for
you. And by Following those steps you created a
picture--even though you didn't know what it would look
like. In other words, you followed a program!

So! When you become a programmer, all you're doing is
planning a set of steps for your VZ-200 to follow.

There's something very important to remember here.
What do you think would happen if the points in that
dot-to-dot puzzle were numbered in the wrong order...or if
some dots were missed out altogether? Can you guess what
you'd end up with? Right--a picture that made no sense at
all!

To get your VZ-200 to make sense of the program you give
it, just be sure to tell it each step in the correct order.

10

7
Wow! Suddenly we know a whole lot more about that
mysterious thing called "computer programming."
(Doesn't sound so scary now, does it?)

In a couple of minutes flat, we've learnt two
things about getting your VZ-200 to do just what
you want:

• You need to tell it the steps it must follow
in order to do the job...
• And the sequence in which it must take those
steps

Terrific! But hang on...there's one thing we'll need to
know before we can tell the VZ-200 anything. And that's how
to talk to it!

BREAKING THE LANGUAGE BARRIER

Remember what we told you last chapter about the
differences between computers and humans? Here's another
one -- computers aren't smart enough to understand the
complex language we use!

To overcome the "language
barrier", humans speak to
computers in a special language
called "BASIC".

You'd probably expect something
with a name like BASIC to be very
easy. And that's exactly what it
is! In fact, it's a whole lot like
English...but with far fewer
words.

11

You can order a fellow human co perform thousands of
duties... everything from "Make me a cheese sandwich", to
"Go and climb twat flagpole": Naturally, we need many, many
words to give instructions for these different duties.
A computer, on the other hand, is capable of performing
relatively few duties. And because of this, there are
relatively few words that IL needs to understand! (Just try
asking your VZ-200 to make a sandwicn for you...it won't
know what you're talking about!)

AND NOW FOR A BIT OF COMPUTER PSYCHOLOGY...

As we've mentioned, a computer isn't an electronic brain.
In fact, it doesn't have a brain at all! It's really only
capable of REMEMBERING (using its memory) and OBEYING
ORDERS (using its processor).

Human beings, on the other hand, are equipped with
brains...and we can use them to tbTk, have ideas, work out
Problems, show initiative, and all sorts of clever things.

So, when you're trying to hold a "conversation" with your
VZ-200, it's important to remember that difference. Because
your VZ-200 will happily do exactly as it is told...and do
it very, very quickly. But it won't do anything unless you
tell it to2

That's where you could run into a little trouble! After
all, most human beings are used to talking to other
humans...and it's very easy to simply forget how silly your
computer really is.

Here's an example: suppose you said to a friend :"Add two
and two". They'd think for a moment (how long depends on
how bright your friend is!), then tell you the answer. Why?
Because they'd automatically assume that you wanted to know
it.

But if you asked your VZ-200 the same question, you could
wait all day. Your computer won't tell you the answer until
you tell It to! That's because unlike your human friend,
it's just not capable of making an assumption.

Your computer will never understand what you mean if you
don't make yourself clear.

If instance, suppose you said to a human friend: "Go and
get me my measuring thingumy. it's in one of the drawers
over there.'
They'd probably work out that you wanted your ruler, and
look through all the drawers until they found it.

But if your friend's brain worked like a computer, they
simply wouldn't be able to work out what you wanted!
instead they'd say: "I don't understand! Wnat is a
measuring thingumy? How do I get to the drawers? Which
drawer do I look in? Or they might just sit there and look
at you blankly!

Just remember this: computers mi untn't. be as smart as

12

us...but they very rarely make mistakes! So, exactly what
can you do if a program does sometning quite different to
what you wanted? Or even refuses to do anything at all?
Well, here's what you don't do: please don't call the
V2-200 rude names. Not because it's easy to hurt its
feelings...but because your computer probably isn't at
fault!

999,999 times out of a million, things will be
going wrong because you--the programmer--have
made a boo-boo.

So this is what you must do: make sure that you've told
your VZ-200 every single thing that you want it to do.
Because if you've accidentally left something out, the
computer will never guess what it is!

13

Chapter 4
Let's Get Started!

Right! Now that you know such a lot about computers, we're
going to do a bit of programming. (Hey! You're not still
scared of that word, are you? We've already told you how
simple it iS I)

Actually, prog ramming your VZ-200 is as simple as saying
"Hello". And co prove lc, "Hello" is the very first thing
we'll teach it to say!

USING LINE NUMBERS

Remember the dot-to-dot puzzle? Every dot had a number. And
those numbers told you the order in which to take each

Your V2-200 needs to know the order in which to take the
steps in a program. So we'll give every step or line) a
number, too.

You could just number the lines 1, 2, 3 and so on...but
it's usually not a good idea. When you start to write
longer programs, you just might leave out a line or two by
accident. (It happens to everyone occasionally!) And if
your lines are numbered 1, 2, 3, etc, you'll nave no spare
line numbers to give your forgotten steps.

It's a better idea to give your lines numbers with gaps
between them--like 10, 20, 30 and so on. That gives you 9
spare line numbers between each step in your program, just
in case.

OK, VZ-200--SAY "HELLO"!

Type the lines inside the box below, exactly as they appear
there. (what's that? Old you say you're not sure how?
OK--just take a look at them for now. We'll go through it
key by key, to show you how simple it is.)

10 PRINT "HELLO" RETURN)
20 GOTO 10 plernm

Right, ow the first thing we want to put on the top line
is the umber 10 (that's the line number we told you about
in chap er 3). Simply press the key maimed 1, and then the
key marked 0. And look! There's your 10 on the screen. And
the little flashing cursor is now directly after the
9...marking the spot where the next thing you type will
appear.

19

(Incidentally, did you hear a 'beep' each time you
pressed a key? That's the VP-200's way of saying
"Yep--I heard you.")

What comes next in the first line of our program? It's the
word PRINT, isn't it? Well, no ...not quite. There's
something that has to go in front of it--a space! To put a
space between things on the V2-200's screen, use the key

marked `SPACE) (Can you see it? It's in the bottom
right-hand corner of the keyboard.) Try it how—just press
once, and release. Sure enough, the cursor will nave hopped
one space to the right.

Now it's PRINT's turn...and there are a couple of ways to
do it, There's the common or garden-variety method of
typing it in letter by letter -- and if you want to do it
this way, it will work just fine. Or (to save yourself all
that typing) you can take a short-cut. See what's written
above the P key? The word PRINT! And of course, you already
know how to get to it. (What's that? You've forgotten?
Shame on you! Go back and take a look at the diagram at the
end of chapter 2.). Let's try using the short-cut, by
holding do n th UM key while we type P.

Hey, now that's convenient! Just as quickly as your VZ-200
could say 'beep', PRINT appeared on the screen. It looks
like magic--but it's just a way of making things easier.
There are dozens of useful words that're just as easy to
'conjure up'...you'll find them above, or below, most of
the keys on the keyboard.

--- ,

r* r("VeriThr-A

C41;1*
To separate PRINT from the next word,
we'd better use the 	SPACE 	key
again. Did the cursor hop another space
to the right? Good!

"HELLO", you'll notice, is inside
`quote-marks ' . The little " symbol is
in the top Cornet of the 2 key...and to
put it on the screen, simply hold down
the 	key while you type 2. Got
It? Right--now type HELLO, letter by
letter; and as a finishing touch add
another " symbol to 'close' the quotes.
Simple!

15

As the lucky last thing on your very first program line,
we've drawn a picture of the key marked PiSTURN1 . Tnis
is really the easiest of all...just press it once and see
what happens. Goodness! Nothing new appeared on the
screen--but the cursor moved down to where the second will
begin!

Boy! What a lot of fuss over one little line! Now
that we've convinced you how simple this whole
business is, you can try your hand at typing in the
second line--all by yourself.

Type 20, then GOTO (it's just above the G key), then 10,
and press RETURN

Do you know what you've just done? It's really pretty
exciting! You've "spoken" to your little computer, using
the keyboard. And you've used two words of the special
BASIC language we told you about in chapter 3.

Let's translate, and show you exactly what you said.

PRINT means "Write this on the screen". (Don't
forget--quote-marks must go around whatever you
want 'printed'.)
GOTO means "Go to the line that I'm about to tell
you.". It's always followed by a line
number--because you have to tell the V2-200 exactly
where you want it to go! (In this case, we wanted
it to go hack to line number 10. So we said "GOTO
10". Get the idea?)

Pressing the 	IRETURNI key simply tells your
computer: That's all I want to put on this
program line. Now, look at the next one!
Tnis key follows just about eveLy line you type
into your V7-200.

Congratulations! Your first program is now sitting right
there in your V2-200's memory.

Terrific, you say. But how come nothing's happening? Well,
it will in a moment...just as soon as we've taught you a
couple more BASIC words.

The words you're about to learn are called
direct commands. They don't need to nave a line
number (although if you give them one, the
computer will still obey them). When your
VZ-200 sees a direct command, it knows chat you
want it to do something with your
program...straight away!

The first one is LIST. Tnis means "Show me the program
exactly as I typed it in". Wren you type LIST, your
program appears on the screen. Try it now.

(Nothing happened? It's probably because you forgot to

16

press TRETORNI...until you do that, your In -200 will think
that you haven't finished giving it your command yet.)

The second is RUN-wnich means "Do as the program tells
you". When you tell your VZ-200 to RUN and then press
[RETURN' it'll start to carry out the program you've given
it.

Ready to see what your little program will do? OK...type
RUN 	RETURN 	and watch this!

Wow! If you hadn't already figured out what was going to
happen, all those "Hellos" on the screen probably gave you
quite a surprise. But it's really not so surprising when
you look at how the program works:

Remember, the VZ-200 starts with the smallest line number
and works its way up.

The VZ-200 went to line 10 first. That line told it
to print "HELLO"
The VZ-200 then goes to the next line (number 20).
Line 20 tells the V2-200 to go back to line 10.
Which starts the whole thing all over again!

This clever trick is called "looping". Why? Because a loop
(or circle) doesn't have an end...and neither does this
type of program! It's a bit like sending your VZ-200 on a
endless merry-go-round ride.

If your VZ-200 refused to sayRELLO to you,
don't take it personally. Just type LIST again
(you haven't forgotten what it means already
❑ave you?), and check that the program on the
screen is exactly the same as the example in
this book.
You may find a mistake. Also, check that none
of the VZ-200's connection cables are loose.

"BUT HOW DO I STOP IT?"

While we've been talking, your V2-200 has been
"Helloing"--over and over again. And it will keep it up
until the cows come home, unless we "break" the program.

Here's another BASIC command that'll do exactly that. It's
called BREAK, and it means "Stop where you are!"

You'll see BREAK written above the very last key in the top
row. To use it, just press the key while you hold down

. And now, here's the surprising part; you 	don't nave
to press nErntri after BREAK! Commands that don't need
PETURN1 ing are as rare as nen's teeth (rarer, in fact --
this is the only one in existence!)
That certainly does the trick! Your screen should now show
the last of the HELLOs, followed by:

BREAK IN LINE 10 (or BREAK IN LINE 20...it
depends on where your computer was when you
"put on the brakes" !)

If you really liked the Hellos, and want see some more, you
can say CONT 	flETURN 	to the VZ-200. This is short for

17

CTRL

ontinue"--and is tells your computer to keep running the
program you broke.

Of course, you can easily give your program an end by
giving it another BASIC instruction called--you guessed
it--END! A program to make your VZ-200 say "Hello" just
once would look like this:

10 PRINT "HELLO"
20 END

So END means "That's the end of this program".

Ready to move on to something else? OK...let's learn two
more BASIC messages that'll get rid of those Hellos: CLS
and NEW.

CLS is short for "Clear the Screen"--what it's
called is what it does.

Try it now.

CLS RETURN

See? The screen is cleared, and the VZ-200 is telling you
that it's READY once again.

NEW means "Forget that program". It clears the
VZ-200's screen and its memory. A bit like giving
your computer instant amnesia

Go ahead and press

NEW RETURN'

The screen won't cnange...but if you now try to tell the
VZ-200 to RUN its program, It will just Cell you that it's
READY again. Which means "Program? What program? I'm READY
to do something new, now! ""

18

BASIC words we've learned
so far:

PRINT "' 	Write whatever's in here " 	" on the
screen.

GOTO 	Go to this line (remember to put a line
number straight after this command!)

ENO 	That's the end of this program.

LIST 	List my program on the screen.

RUN 	Carry out the program.

BREAK 	Stop running the program!
CONT 	Continue running the program.

CLS 	Clear the Screen.
NEW 	Forget the program.

(And don't forget -- press the 	 RETURN! key
at the end of each line to let your computer
know you've finished with the line!)

19

Notes

20

"OK...nobody's perfect!"
(Or, "How to fix Typing Mistakes!")

No matter how careful you are with your typing, sooner or
later you'll find chat you've pressed the wrong key. Don't
despair...boo-boos are easy to make. You wouldn't be human
if you didn't! And anyway, your VZ-200 is such a clever
little computer that mistakes are almost as easy to fix, as
they are to make!

If you look at the last four keys in the bottom row of the
keyboard, what do you see? That's it...each key has a
picture of an arrow above it. One arrow points co the left,
one points to the right, one points up, and one points
down.

You can use these arrows to "steer" the cursor
around the VZ-200' screen. The whole idea is to
position the cursor directly over the mistake that
you've made!

"Yes -- but now do they work?"

We were just coming CO that. As we'v mentioned, each
these little pointers is above a key. Which means that c'
in section 1 of the diagram at the end of chapter 2.

So! To operate any of the arrows, we know that
we must first ...(all together, now!)...hold
down the 	key!

Very good, class! If you hold down (CTRL I 	, every press
of an arrow key will move the VZ-200's cursor one space in
the direction of the pointer. (Up, down, left, right...It
all depends on which arrow you choose!)

If you're not content to move just one space at a time, try
leavintyour finger on the arrow key. The cursor will keep
moving across the screen (beeping all the way!) until you
let go of the key!

A little warning: If you do try this trick, you
may accidentally "overshoots the place you were
aiming for. Don't worry! Just use a different
arrow key to move the cursor back to your
target.
("Driving" the cursor round the screen is
rather like driving a dodgem car...you can take
it anywhere you like!)

A BIG warning: You must remember to hold down
the 	CTRL 	key all the time , while using an
arrow key. 'Cause if you don't, the cursor will
leave a trail of destruction across your
screen!

There are several ways of making boo-boos. Fortunately,
there are also several ways of fixing them!

"Oops -- I've typed in an extra letter!"

Let's pretend that you typed line 10 like this:

10 PRINT "HEELLO"

Hmmm..tnat looks a bit odd! We'll nave to get rid of that
extra "E" (unless, of course, you want to give your
computer a Mexican accent!)
To "rub out" a letter (or a space, a number, or some ocher
character) is simple... 'cause there's a command to do the
job for us. And it's called -- very logically -- RUBOUT!
You'll find it above the ";" key.

To fix this mistake:

Using the arrows, position the cursor over one of the extra
E's (it doesn't matter which). Now, hold down 	CTRL! and
press RUBOUT. The cursor will "swallow" the letter
underneath it!

"Oh, rats
	ve left out a 1e

Fortunately, there is also a command that allows a
forgotten character to be "inserted" between others on the
screen!
(Can you guess what it's called? Right -- INSERT! To find
it, look above the L key.)

What if you had typed line 10 like this?:

10 PRINT "ELLO"

That'll never do! We can't nave a computer that 'drops its
Ws"!

To fix a problem of this type:

Position the cursor over the character that should
after the one you've left out. (In this case, it would be
the letter E)

Wnen you hold down 10E1114 and press INSERT, the cursor will
"push" the letter underneath it to the right. (Why? To make
room for whatever character you wish to insert!) In the
blank space that it's created, just type your forgotten HI

Sorry -- you can't take shortcuts with INSERT!
To insert more than one character, yo; most
press INSERT before typing each one.

22

"Good Grief! I've REALLY goofed this line up!"

Now, we know that some people never do things by halves!
And occasionally, you might mess up a line completely.

For example, you could end up with something like:

l& NELOO'

Urk 	what a disaster! In a case like this, the easiest
thing to do is type the entire line again.

Move the cursor to the very beginning of the line...and
simply type over the top of the whole thing.

After you've made this sort of correction, it's a very good
idea to LIST your program. Why would you do that? To check
for left-over, incorrect lines that may still be in your
computer's memory!

If you managed to get the line number right, at
least, there's a rather neater way to correct a
really messy line.
Using the same line number, just type the whole
thing in again. (This time, without the mistakes!)
You see, your computer knows that it can't have two
lines with the same number.

So it'll replace the first line, with the second
(and correct!) version.

Now, listen closeld....'cause we've got a very,
very important rule to tell you abouti
After making corrections of any sort (whether
you used RUBOUT, INSERT, or retyped a whole
line), you must press RETURN t It doesn't
matter where you are on the line .

You see, by RETURN ing you are telling your
VZ-200 to take notice of the corrections you just
made!

23

Chapter 5
Now for a little Mathemagic!
Wonderful! Now you've done your first piece of programming.
And it worked! This programming business certainly is a
useful trick, isn't it? But there's another side to your
VZ-200...and it's just as useful.

In a matter of moments, your
V2-200 cn become not a bird...not
a plane..

a
.but a

And it doesn't even need to step
into a phone booth! To turn your
computer into a Super Calculator,
it's just a matter of giving
instructions a little differently!

When we wrote our first program, each step had a number.

Beginning each line in your program with a number is like
telling your computer:
"Remember these steps...but don't follow them yet"
The V2-200 puts your instructions into its MEMORY, so it
won't forget what you've told it.

Orders like these are called DEFERRED INSTRUCTIONS.

There's another sort of order you can give your VZ-200.
This one says:
"Follow this step...straight away!"

Orders like these are called DIRECT INSTRUCTIONS.

To get a computer co do maths problems immediatety - like -
a pocket calculator -- all we have to do is leave out the
line numbers! Now, we've told you how to turn your VZ-200
into a Super Calculator. Perhaps the next thing to show you
is how to do calculations!

Imagine you wanted to work out a sum all by yourself. If
it's a very easy one, you might use your fingers (and your
toes, if you take your shoes off!). But most of us are used
co writing sums down on a piece of paper when we want to do
them.
And that means that most of us are used to seeing the

24

symbols for different mathematical functions looking like
this:

addition (or plus) looks like 1-
substraction (or minus) looks like -
multiplication looks like x
division looks like +

When you're asking your V2-200 to work out sums for you,
adding and subtracting are no problem -- their signs look
exactly the same as usual.

But what if you typed the usual sign for multiplication
into the computer? Right -- the V2-200 might mistake it for
the letter "x"...and that would only make confuse the poor
thing! So when you're talking to your computer, the symbol
used for muitiplicaton is * (which looks a bit like an "2"
anyway!)
The VZ-200's sign for division is different, too--it looks
like this: /. If you want your computer to divide say 56
by 8, the sum you'd give it would look like 56/8.

Your VZ-200 can even raise one number to the power of
another! Now, most of you know how to write a sum like this
on paper. For example, 10 to the power of 4 is written
like:

The number you are
raising goes here.

(This is really just
10x10x10x101)

The norther of the power
that you are raising it
to is the swab figure
up here.

a short way of saying

4

It would be hard for the V2- 200 to write a sum like that on
its screen. So to raise one number to the power of another,
we use the t symbol between the two numbers in the
calculation.

To get your computer to work out 10 co the power of 4,
you'd type in the sum like this: 10t4

(Just think of it this way--the
arrow is there to tell the second
number where it's supposed to be!)

We did mention that your V2-200 can become a Super
Calculator...and it really is capable of doing some super
complicated sums. But if there are a whole lot of maths
operations in one sum, your computer will work things out
in a special order:

25

First: It works out any numbers that are being raised to
the power of another (by the way, the very grand
mathematical ne for this is "expotentiation"). It does
this starting fr

am
om the left, and working its way to the

right.

Eg: to work out 3 t 2 	2

the V2-200 first works 3 f 2 (which is 9); then
works out 9 t 2 (to get the answer of 81.)

Second: It does any multiplications and divisions (from
left to right).

Third and last: It works out the addition and subtraction
(from left to right).

Eg: to work out 6 + 3*4 + 6/3

the V2-200 works 3*4 (that's 12), and 6/3
(which is 2). Then it adds 6 + 12 + 2 (to
arrive at the answer of 20)

Incidentally, you might want to use a set of
brackets in your problem. If so, whatever is
inside chose brackets is treated as a separate
little sum. It is always worked out before
anything else!

Eg: co work out 18/(3 	3)

the VZ-200 does the bracketed problem (3 +
first--and decides that the answer is six. So
the sum it's then left with is 18/6 -- which
turns out to be 3.

GETTING VE-200 TO TELL YOU THE ANSWER

Last chapter, we asked the VZ-200 co write something on its
screen. Remember the BASIC word we used to do it? That's
right-- the word is PRINT.. and we put quotation marks
around the thing we wanted to see on the screen .

Lets's cry testing it out on a simple sum. Hmm, lets
see...how about 2 + 4. First, type it in like this:

PRINT "2 	4" RETURN

Can you see what happened? Your computer did exactly as it
was told...it printed what was inside the quotes . Only
trouble is, we don't want to see the problem--we want to
see the answer)

26

To get the VZ-200 to work out your problem and
print the answer, simply use the PRINT statement
WITHOUT THE QUOTE-MARKS!

Care co try it out? Use CIS to wipe the screen (it's just
like having a blackboard duster, isn't it?) Now, type in
your little sum again...this time, like this:

PRINT 2 + 4 RETURN

Ta-da! A 6 should now be on your screen -- and that, of
course, is your answer!

Like to add a touch of class to your maths problems? We
can, you know...by using both sorts of PRINT statements.
It's just a matter of putting your sum into a snort
program...like the one below, for example:

10 PR/NT "2 + 4 =.
20 PRINT 2+4
30 END

Can you see what it's going to do? Type it into your VZ-200
(don't forget to use the 	SPACE 	key for spaces and the
(RETURNf 	key at the end of eac line, will you!)

Got it? If you don't trust your typing, use LIST just to
make sure that everything is ex ctly right. (Isn't it great
having all these helpful commands at your fingertips?) If
everything's fine, you can RUN your program.

(on, if you'd like to C S (Clear the Screen) again
first, go ahead! A lot of people like to do this
before they RUN somethi g... it looks a whole lot
neater!)

There! Now, the screen should s y

READY
RUN
2 + 4 =
6
READY

What the program actually said to your computer was this:
Line 10 said "Print this on the screen, exactly as it
is."
Line 20 said "Work out this sum...then print the
answer."
Line 30 said "That's all, folks!"

That's a pretty snazzy trick! But do you think there must
be a way of putting the question, and the answer, on the
same line?
Do you think we would have brought it up if there wasn't a
way?

Press LIST again, to put your program back on the screen.
Now, can you remember what we told you about the "editing
arrows"? Use them now, to move the flashing cursor back up

27

to the end of line 10. (Don't forget, hold the ICTRL1 key
down all the time that you're moving the cursor around.)

Once the cursor is just where you want it, press the
semi-colon (the little symbol that looks like this ";").
Done that? Now press [RETURN again--the cursor should
end up at the beginning of line 20. Using the arrows again,
put it back where it belongs--under the very bottom line
(READY).

Now, a quick press of the CLS key and you're ready to RUN
your jazzed-up program. And when you do, it'll look like
this:

READY
RUN
2 + 4 = 6
READY

An, to t's even better. Who'd have thought that one little

V
emi-c Ion could be such an important helper. It told the
Z-200 to stay on the same screen line when it had finished
printi q line 10!

Gettin more adventurous

Whoope ! The more we tell you about this wonderful little
comput r, the more you'll want to try things of your own.
Let's ry to get the VZ-200 to solve that same maths
problem for us...in a way that's even more elaborate.

Type N W to make the V2-200 forget our last program. OK?
Now, t pe in tnis one:

10 PRINT "COMPUTER, ADD 2 AND 4"
20 PRINT
30 PRINT "CERTAINLY, MASTER!"
40 PRINT "THE ANSWER IS";
50 PRINT 2+4
60 END

Clear the screen (just to be tidy!), type RUN...and hold
onto your hats!
Goodness--would you ever have believed that a computer
could be so polite? Look what the VZ-200's saying now!

READY
RUN
COMPUTER, ADD 2 AND 4

CERTAINLY, MASTER!
THE ANSWER IS 6
READY

Did you notice the little extra trick we sn aked in on you?
Where line 20 should have been, there's nothing at all!
That's because wnen you typed line 20 into your program
it looked like this:

20 PRINT
In other words, you told the computer to print nothing on

28

that line...and that's just what it did. It printed a blank
line.

You can use this trick to make your "print-outs" look neat!

29

3P

Chapter 6
Constants & Variables

Sooner or later, every computer programmer will need to
know the difference between something that's constant 	and
something that's variable. We might as well mAYe it
sooner...so that difference is wnat we'll learn next!

WHAT'S A CONSTANT?

If you call something constant, it's just like saying that
it never changes—its value is constantly the same. Here's
a little example to illustrate the whole idea:

These numbers live on a short number
line...from negative 3 to positive 3. Let's
imagine that every one of these little fellows
has a "personality" (or value) all his own.
Each one is different from The others.

AP-

As you'll notice, every number has his own position on the
number line. Where they sit depends on their values...arid
they can never, never leave their spot! Take number 1, for
example. He's always got the same value, and he always sits
right where he's sitting now. Nothing can change that.

"eut hang on!" you might say. "I can change the value of
1...all I have to do is add 1 to it.
Well, let's see what happens if we try.

Writing "lel" Is really a short way of saying "Start at
number 1, and take 1 step up the number line." When you do
that sum,
you'll end up at number 2, of course.

31

But you haven't changed 1 into 2...you've just
moved along the line co a new number! 1 is still
sitting there--and he hasn't changed a bit!

You can add, subtract, multiply, and divide constants...Cn
fact you can do whatever you like to them. They won't
change--you'll just end up with different constants as your
answers!

HOW ABOUT VARIABLES?

Have you guessed yet what we're going to cell you about
variables? Right! A variable is something that can change
its value. And it's you Who does the changing...as many
times as you like!

Imagine that your VY-200's
memory is divided up into a
whole lot of compartments...a
bit like the "pigeon-holes"
behind a hotel reception
desk.

Suppose you want the hotel
desk clerk to get a parcel
out of one of these
pigeon-holes. If none of the
compartments are marked with
a name, you can't tell him
which compartment it's
in...and he simply won't kno
where co start looking!
Before the desk clerk can
retrieve anything, every
compartment needs to be
labelled with a name of its
own. When you "create" a
variable, you are:

1. Giving a name to one of the pigeon-hole
computer's memory.

2. Putting something into that pigeon-Hole!

A variable name can be:
•just plain old A, or 9, or C,...or any letter,
right down to Z.
• Any combination of two letters--like AB, gB,
MT and so on.
• A letter of the alphabdt, followed by any
number from 0 to 9 -- for example, A3, YO, R2,
92. (If you want to label your compartments
like this, just remember that the letter always
comes first! If you try co use a name like 2R,
or dli,or 65, your computer won't like it at
all!)

32

How to put a variable into the VZ-200's memory

To do this, we'll use a new BASIC command called LET. Look
at this example:

LET A=4

The name you give to a variable can be longer than those
shown above...but the VZ-200 won't read past the first two
characters of a variable name.

If you label a variable SMILE, the VZ-200 will call
it SM. Tne same rule applies no matter what name
you use. For example GEORGE, BANANA and
SUPERCALAFRAGALIST/C are just GE, BA, and SU as far
as the VZ-200 is concerned!

Warning: the VZ-200 has a special list of "reserved" words.
Now, these words -- just like a "reserved' table in a
restaurant -- are set aside for some other 	 e. And using
one of them as a variable name is definitlya no-no! (If
you look In Appendix C at the back of the book, you'll find
this list.)

Unless you've got a whole lot of variables that
you want to label, we suggest that you just
stick to oe-letter names. It's really a whole
lot easier!

The first part of this
instruction says:

\--1)0 "Label a compartment in
your memory as A."

She second pant says:
"Store the value of 4 in
compartment A."

Remember what we told you about variables? You can change
their value whenever you want. To change the value of A to,
say, 7, simply type:

LET A=7

Your VZ-200 will find the compartment named A in its
memory. There's only room for one value in each
compartment. So after your computer has "formed" the new
value (in this case, 7), it will use it to replace whatever
is already inside A.

Easy, isn't it? You can change the value of a variable just
by giving it a new one!

33

Now, for some very surprising news! Tnere are a few
shortcuts chat a programmer can take...and here's one of
them:

When you give your V2-200 an instruction to create a
variable, the word LET doesn't nave to go at the
beginning! You can leave it outt—irEogether -- your
computer will understand what you want.

(Really, LET is only there to remind us humans what the
rest of the command is doing!)

34

35

Chapter 7
More Mathemagic!

Hello? Anyone there? On, good...you made it through
the last chapter. We're very glad to hear
it--because now you know all about the LET
statement. Not only do we use it to label a
compartment in the VZ-200's memory; but also to put
a 'value' into that compartment.

That's one way of setting up a variable. This chapter,
we'll learn another BASIC statement that'll do a similar
job to LET. But it goes about doing it In a different way.

The word for this new statement is INPUT. Here's the
difference:

LET A=7 says: 1. "Label a compartment in your
memory as A."
2. "Put a value of 7 into compartment
As-immediately."

INPUT A says: 1. "Label a compartment in your
memory as A"
2. "Don't put anything into compartment A
yet...just wait where you are until a value is
typed in from the keyboard."

See the difference between the two? If the V2-200 stumbles
upon an INPUT statement when RUNning a program, it'll stop
and wait (very patiently, too!) for you co tell it what
you'd like the value of A to be.

INPUTreal1y is an extremely helpful word to know. Want to
know why? OK...we'll show you!

DANCING ON THE TABLES.
Just about everyone we know absolutely
pates having to do "times-tables"
(Yak!). You remember...they look like
this:

2 X 4 = 8
3 X 4 = 12
4 X 4 = 16
...and so on.

Yes, yes. General groans all round. But
never fear! Your trusty V2-200 has come
to the rescue! By the time we've
finished Chid chapter, You'll never
have to do a times-table again...'cause
we're going to train your computer to
do them for you. Ah, what a blissful
thought!

36

So, let's get started. It's not a difficult
program at all...we'll go through it with you,
step by step.

Before we can do anything, we'll need a number to multiply
by. How 'bout something simple to start with? 4 should do
nicely.

The very first thing we'll need to do in our program is
give the VZ-200 a number to multiply by 4. Wouldn't you
like to have your computer ask you for it, very politely?

We thought so! Perhaps the first line of the program should
look something like this:

110 PRINT "WHAT NUMBER, PLEASE"

Now, line 20...and now it's time to put our brand new BASIC
word--INPUT—into action. Type in the following line:

120 INPUT A
	

1
(Remember, when the V2-200 is RUNning this program, it'll
stop here and wait for us to give it something to put in
pigeon-hole A.)

What we'll want the next line to do is print our sum, and
it's answer, on the screen. Hey, that's easy! We've done it
all before in chapter 5! Type this into your computer:

30 PRINT A; X 4 4";

Hey, just a minute...there are 2 semicolons in that line.
If you noticed them, that's good. We know what the second
one's for--but what about the first? Well, relax. It's just
another little trick to make things easier/ You see, in
this line you want the V2-200 to PRINT:

• The number that you put into pigeon-hole A
.and...

• The bit in quotes that comes straight after it
By putting a semicolon between these two things, you can
use the same PRINT Instruction for both of them.., and
they'll be printed side-by-side on the same line.

You probably know what comes next without our having to
tell you! It's the line to get the V2-200 to do your
calculation and tell you the answer...and it will look like
this:

140 PRINT A*4

Of course, this is simply saying "multiply whatever is in
pigeon-hole A by 4, and print the answer on the screen."

This is a times-table--and we won't be content with just
one sum! You'll probably want to multiply other numbers by
4, too. So in line 50, why not get the computer to ask for
your next number to go into pigeon-hole A? Here's now we'll
do it:

37

50 PRINT "ANOTHER NUMBER'

Right--so exactly how do we get this new number into A. No
sooner said than done, thanks to the next line of our
program. In line 60, we'll use our old friend the COTO
command. Type this:

60 GOTO 20

This GOTO command really is a wonder, isn't it? It will
send your VZ-200 zooming back up to line 20--and it'll wait
there while you think up another value to put into
pigeon-hole A.

Don't forget what happens when you tell
your computer to store a new value in a
particular compartment in its memory.
First, it forms a new value for your
variable. Then it removes what's already
inside that pigeon-hole -- and puts the new
value in its place.

And there It is) Your very own program to work out the 4
times-table for you. But why should you take our word that
it works -- when proving it for yourself is as easy as
feeding in RUN ?

Go ahead and try it (and don't forget to CIS first, will
you?)

Hey--what's this? All that's on the screen so far is

READY
RUN
WHAT NUMBER, PLEASE

We did warn you about that! The question-mark in the second
line of your program is just the NPUT statement doing its
job. Yo r computer wants you to give it a number to
multipl by 4. Well, there's no point in keeping it
waiting Let's think up a number. Er...what about 2? Type
it in, and press OIETWINI

READY
RUN
WHAT NUMBER, PLEASE
? 2
2 X 4 = 8

ANOTHER NUMBER
2

Blimey! It does work, after all! See if you can work out
what's happened. The program has 'looped" right back to
that INPUT statement on line 20.. and now the VZ-200 Is
asking for another number to wilt ply by 4. And it'll keep
on answering your questions, and looping around to start
again, ntil you're tired of giving it new numbers to play
with. (Or until it's time for your dinner!).

30

Go ahead! Try a few more numbers, just for the heck of it.

Perhaps you're ready to try another
times-table...the 9 times-table, for example.
Easier done than said! It's just a matter of
changing a couple of lines in your program.

First, pressIRREAB1-it'1l stop the VZ-200 in
its tracks.
Next, LIST your program on the screen. Now, use
the editing arrows to change the "X 4 =" in
line 30 to °X 9 .". Then change line 40 so that
it says A*9 instead of A*4.

Don't forget to press the
line!

RETURN key after changing each

All done? Move the cursor down to the bottom
again (so that it's flashing underneath READY).
Type CLS, and RUN your new program...you'll
find that the VZ-200 will now multiply any
number you give it by 9!

Now: a little program for the lazy types! oh, you know who
we mean...those of you who think it's a bit too much
trouble to INPUT a new number each time! Believe it or not,
this program will get your VZ-200 to increase the value of
A every single time it goes round the loop. And do it
automatically, tool

10 Avl
20 PR/NT A; " X 4 =";
30 PRINT A*4
40 Maid
50 COTO 20

Once this p °gram is RUN, you don't have to do a thing!
(Except, of course, to sit back and be amazed.) This is how
it works:

Line 10 stores a value of 1 in a pigeon-hole named A.
Line 20 prints the sum that the computer is about to do on
the screen.
Line 30 actually does the calculation -- multiplying A
(which is 1!) by 4, and printing the answer.
Line 40...ah, here's the secret ingredient in our
automatic" times-table! This line says "add 1 to whatever
is stored in pigeon-hole Al"
Line 50 "loops" the program back to line 20.

The first time around, your computer will add 1 to
1...giving A the value of 2. Next time, the value
of A will be changed to 3. Then to 4, then to 5.
then to 6...and so on. In fact, the VZ-200 will
just keep on increasing A by 1, and multiplying it
by 4, until you BREAK the program!

39

That's a pretty nifty trick you've taught your computer!
It'll work no matter what number you want to do a
times-table for -- and you definitely deserve a pat on the
back for mastering it. But whew...this chapter really has
been hard work! You'd probably like a rest now (and a
chance to play around with your new programming skills!).
So we'll leave you alone for a while.

40

41

Chapter 8
Making decisions!

Are you with us so far? Good! Because it's
about time we got. started on some really
exciting stuff. We're going to learn about o
of the most powerful BASIC statements you can
ever use In your programs. It's called
IF-THEN-ELSE

As you learn more and more about programming, you'll be
amazed to find just now handy this statement can be. Hey,
now don't go getting all squeamish and scared on us! We
said thelF-THEN-ELSEstatement was powerful--but that
doesn't mean tnat it has to be hard to use. Just wait 'Gil
you finisn reading this chapter. we bet you'll be wondering
what you were worried about.

Putting a program into your VZ-200 is a bit like planning
out a 'jogging track' for your computer to RUN
along. .and wnen you ask it to RUN the program, tnat's
exactly what it does. It starts at the beginning of the
program (remember? That's the smallest line number), and
keeps on jogging until it reaches the end.

When you put anIF-THEN-ELSE.scatement into your program,
it forms a sort of 'fork' or 'branch' in the track that.
your computer is running along. Now, this is a bit
confusing for cne VZ-200. suddenly, there's more than one
way that it could choose to go...how can it tell which is
the right one? It can't, of course--not all by itself.
You'll nave to give it a hit more information, to help it
'decide')

Here's an example that should make the whole idea pretty
simple to understand.

Imagine you are walking down a road in an unfamiliar
suburb, on your way to visit a friend. You want to find
your way to your friend's house...but because you don't
know Where you're going, you'll have to rely on the road
signs that you find along the way to give you directions.

So, there you are strolling along. It all seems easy enough
when...Hello! What's tnis? You've come to a fork in the
road. It branches off to a dirt track in one
direction...and a cncrete lane in the other. Which way is
the right way? To decide which path to take, you're going
co need more information. Unfortunately, though, you
haven't got a clue where you are--so where are you going to
get this information from? Never fear! Right at the fork,
there's a road sign to help you. It says:

And there's your answer! To
find out the right way to go,
all you have to do is examine
the conditions--in this case,
the weather conditions.

So, how do you go about
examining conditions?
Simple--by testing them!

If you look closely at the message on that sign, you'll see
that it's divided into three parts. See them? One part
starts with 'IF', one with 'THEN', and one with 'ELSE'.
(How convenient!)

IF it's nor raining
THEN GOTO the dirt track
ELSE GOTO the concrete lane

Here's how you'll work out the puzzle of

First part:
IF it's not raining...

Ask yourself "Am I getting wet?
if you're not, it shouldn't
take too long to work out that
it's not raining! And if it's
not [Siding, you know that tnis
part of the statement is true.

So you must go straight to the

Second part;
...THEN GOTO the dirt track

And do exactly as this part cells you.

43

ut what If you asked yourself "Am I
geeing wet?" -- and suddenly realised
"Yes, I aml Hey, it must be raining."

el 	Q Well, if it is raining, then the first
part of the message can't be true. And
if it's false, you mustn't follow the
instructions in the second part --
you'll have to try something ELSE.
Which means you'll have to go to the

Third part:
...ELSE GOTO the concrete
lane.

And do as this part tells you, instead!

SD, So now we've worked out how a human being (like you)
would deal with a 'fork' in the crack that they're
following. Actually, we do have a very good reason for
telling you all this! We just want to explain that when the
VZ-200 comes across a 'fork' in its program, it deals with
it in pretty much the same way...with a few differences, of
course!

Difference Number 1: If we want to use the IF-THEN-ELSE
statement to 'force' your computer into making a
choice about something, we'll have to give it two
things to compare against each ocher. These things can
be either variables or numbers. Computer operators call
them 'expressions'.

Difference Number 2: when you were trying to get to
your friend's house, the weather conditions were what
you were testing. There are lots of other conditions
chat could influence your decision in other
situations...the choice is really quite enormous!
Tne VZ-200, on the ocher hand, has a much more limited
Choice of conditions to test. We'll call them
"relations"--because what. your VZ-200 will actually be
testing is how your two expressions "relate" to each
other.

This is the list of relations your VZ-200 could
use. (To make it easier to write, each relation has
a special symbol all its own):

= Equal to
<> Not equal to
<= Less than or equal co
>s. Greater than or equal to
< Less than
> Greater than

An, the feeling of power is wonderful. Now you know a way
to force your computer into "making up fi-Ts mind" about
which direction to go--without asking your advice first! As
you might have guessed already, this power is going co let
you relax a hit...while the VZ-200 takes over more of the
work. After all, what else are electronic slaves for?

When making a fork in your program, IF and THEN are
absolutely essential. ELSE, however, is a different story!
This statement can be left out...if you put the ELSE
instructions on the program line directly after the IF-THEN
line! You see, if the IF part of the statement turns out to
be false, the VZ-200 will ignore the THEN part. Instead,
it'll drop straight down to the next line of the program!
(And carry out the instructions there.)

It works like this: 	 06
10 IF it's not raining THEN GOTO the dirt track

20 COTO the concrete lane•41, 410 44

Have a bit of a rest now...read back over this chapter,
just to be certain that Y ou understand the F-THEN-ELSE
statement.' Cause next chaper, 	 Show you now to put
your new-found power to work!

45

Notes

46

Chapter 9
Just playing around...

Good grief! Are we really up to Chapter 9 already?

If you've stuck with us all tnis way, you must have learned
lots and lots about your little computer. In fact, by now
you're probably starting to think of your VZ-200 as a
friend, rather than a mystery!

we hope so, anyway. Now, what are friends for? For one
thing, friends are for having fun with! So tnis chapter,
we'll help you discover how to play games with your V2-200.

We must admit, the V2-200 isn't terribly good at a lot of
games. For example, you'd never catch a computer playing
ice hockey, or ping-pong. Monopoly is a bit coo hard for it
to manage. And leapfrog is, well, simply out of the
question! But there is One sort of game that the V2-200
does love to play--and that's a guessing game.

So, what are we waiting for? Let's learn how to play!

PICK A NUMBER, ANY NUMBER

At last, a chance to try out that powerful new statement
called IF-THEN (no, we don't need to worry about the ELSE
this Cline).

Before we go any further, chink of a number--any one you
like. Got it? Good--keep it to yourself. This will be our
"mystery number"...and nobody will know it except you and
your VZ-200. (Don't you just love secrets?!)

And now: on with the game! We're going to write a program
that will get one of your human friends co guess your
mystery number.

Look closely at the program below. No, don't
panic...there's nothing tricky in ic! Every command in
there is something we've encountered before. You might

47

actually be able to tell, just by looking, how it's going
to work! (Don't be upset if you can't --we'll go through it
line by line in a moment.) Type each line exactly as we've
shown you.

10 A=7
20 PRINT "GUESS MY NUMBER"
30 INPUT B
40 IF DTA THEN GOTO 70
50 PRINT "WRONG! TRY AGAIN"
60 GOTO 30
70 PRINT "YEP, THAT'S IT"
80 END

Finisne already? You are getting good at using the
keyboar , aren't you! Now, as this is t e longest program
we've given you so far, it might be a good idea co LIST
your program, just to make sure that's everything's
perfect. Do that now.

Does it look OK to you? Terrific. Now, here's a handy
little hint. Up 'til now, you've been pressing CLS every
time you'd finished LISTing your program. Wouldn't it be
neater if we put the Clear the Screen command on a line
right at the beginning of your program?

That way, when the V2-200 RUNs the program, the first thing
it will do is wipe the screen clean. Yes, we thought you'd
like the sound of that!

Underneath what's already listed on the screen, type this
line:

5 CLS

Now do you see why we leave gaps between line numbers?
Number 5 is smaller than 10...and so our new line will
become the first line in the program. Oh, so you don't
believe us? OK--just press LIST again and see for yourse

See? There's our CLS line...right at the top of the
program!

Oops...got right off the track for a minute there, didn't
we? Let's get back to explaining how the game works.

ANALYSING THE PROGRAM

Line 10: This is where we whisper our "mystery
numEW-4--to the V2-200, and tell it to hide it away
in a compartment called A.

Line 20: Prints a message on the screen, asking
your friend to try and guess the secret number.

48

Line 30: Tells the VZ-200 to first label another
compartment in its memory as B. It will then wait
for your friend to think up a number. When they
type in their guess, your computer will put the
number into pigeon-hole B.

Line 40: The IF-THEN statement goes into action!
There are now two variables in the computer's
memory. A contains the mystery number; and B
contains your friend's guess. When the V2-200
reaches line 40, it'll stop and compare whatever is
inside A, with whatever is inside B.
Remember, the IF-THEN statement makes a 'fork' in
the program...and the V2-200 has to decide to which
way to go. IF B is equal to A, THEN your computer
will decide to GOTO line 70--which prints a message
that the guess was correct.
But if B is not equal to A, then the IF part of the
IF-THEN statement is false...and the VZ-200 will
decide to ignore the THEN part and go straight to
the next program line (line 50).

Line 50; Prints a message to tell your friend that
their guess was wrong...and offers to let them try
again.

Line 60: This line loops the program back to line
777-TPRUY for the next guess to be INPUT into
compartment B. If they keep on guessing the wrong
number, this line will simply keep on looping the
program back, ready for their next try. Your friend
can have as many guesses as he or she likes!

When they finally hit the jackpot, and the number
in compartment B is equal to the number in A, the
VZ-200 will GOTO line 70, print the message there,
and then drop down to line 80 to end the
program--and the gape!

Can't wait to try it out on someone? Well, that's
alright--we don't expect you to wait. It's all so
exciting...you'd better go and find a friend (or two) to
play your game with you! We'll be right here when you've
finished.

NOW, TO BIGGER AND BETTER THINGS

Congratulations...was your friend impressed?

They certainly should have been...that's a pretty snazzy
program you've got there. But gosh, why should we stop
now--when by adding just a few more lines, we can make it
snazzier still?

The IF-THEN statement really made this program something
special. And we only used one of the comparisons (or
relations) your computer can-use to help choose the way to
go How about adding a couple more, from the list we showed
you last chapter?

49

Oh good--we had a feeling that you'd agree 	LIST to
put your program up on the screen again.

First: change line 50 to say this

50 IF BgA THEN GOTO 56

(To make the change, all you need to do is move the cursor
to the beginning of the existing line 50...and t pe the new
line over the cep of it. Don't forget to RETTU 	at the
end!)

When that's done, move the cursor down to the very bottom
again and type these lines:

52 PRINT "TOO LOW!"
54 GOTO 30
56 PRINT "TOO HIGH!"

Yet aga - n, those spare line numbers are coming n handy!
Told yo they would, didn't we?

Type LI T again. Your computer will sort the line numbers
out into their proper order--so your new program should
look just like this:

5 CLS
10 Am7
20 PRINT "GUESS MY NUMBER"
30 INPUT
40 IF B=A THEN GOTO 70
50 IF BUA THEN GOTO 56
52 PRINT "TOO LOW!'
54 GOTO 30
56 PRINT "TOO HIGH!"
60 GOTO 30
70 PRINT "YEN THAT'S IT!"
80 ENO

This program will run in exactly cm same way as the last
one, until line 50. If the guess in B is equal to the
mystery number in A, the VZ-200 5:11 zoom straight to line
70. But if 8 doesn't equal A, the V -200 will drop down to
the next program line. And here's w ere things get more
interesting! Since we've changed our program around, we've
got a new, improved line 50.

In our jazzed-up program, line 50
contains another IF-THEN fork...and
your computer has to make another
comparison between 8 and A before it
can decide which way to go. This time,
we want to check whether the number in
B is larger than the number in A. IF i
is, THEN the VZ-200 will GOTO line 56.
56 prints a message to say that the
guess was TOO HIGH. It then goes to the
line below--line 60. 60 'loops' it back
to 30, to wait for your friend to make
another guess.

50

But if B isn't larger than A, the IF
part of the second IF-THEN statement is
false. So the VZ-200 will continue on,
to the next program line in order--line
52.

Now, we know that 8 isn't equal to A. And it isn'tlarger
than A, either. So if your V2-200 nas finished up in line
52, there's only one thing that B can be--and that's
smaller than A. In this line, the VZ-200 is told to print a
message saying the guess was TOO LOW.

What comes after line 52? Line 54...and this line also
'loops' the VZ-200 back to 30, ready to accept another
guess.

Don't you feel clever? Now you've got a program
for a guessing game that'll actually help the
player...by offering hints along the way!

Who needs a computer that can play leap-frog, anyway?!

51

Notes

52

Chapter 10
Still playing around!
No matter how many friends you've got, there will always be
a time when you just can't find anyone to play games with
your VZ-200 and you. Well, cheer up...you don't have to
wait till your friends are around to have fun with your
computer!

You can't really play the guessing game we showed you last
chapter, all by yourself. At least, w suppose that you
could. But it wouldn't last very long! After all, the
mystery rwmber" is no mystery to you--you're the one who
thought it up in the first place. So your very first guess
would almost certainly be correct...and the game would be
over as soon as it began!

We can soon fix that little problem for you! All we have to
do is make a small change to the program at the end Of
chapter 9.

Once again, it's time to learn another
wonderful, helpful BASIC word--RND. This
command means "Think of a number--but don't
tell me what it is!"

We know what you're thinking...If this new trick will get
the computer to "think", it must be magic! Well, it's not
exactly that--but it comes pretty close! The RND command
asks the V2-200 to pick a number out of the air...almost
like a magician pulls rabbits out of a hat.

Now, just a moment. If there's something that there are
plenty of, it's numbers. In fact there are millions, upon
billions, upon trillions of them (and more besides!). So,
what if you let your computer choose any number it wanted?
You could spend months sitting there guessing--and still
not get it right!

Fair's fair...we'll have to narrow down the range of
numbers that your VZ-200 can choose from.

Directly after the RND command, you'll need to put
a number in brackets. Just to demonstrate what we
mean, we'll use 50. Now, your RND command looks
like this:

RND
--a

RND (50)

Do you know what his comm nd is telling your V2-200 now?
It's saying "Cho° e any number you like--as long as it's
between 1 and SO!".
In other words, your computer now has 5% numbers in it's
hat...and it will pull out one of them to be the secret
number.

53

Ah, that makes things a little
easier! Now you know that the
number you are trying to guess is
somewhere between 1 and 50.
Of course, the number you put
inside those brackets is up to you.
If you want to make the mystery
number easier to guess, you could
use a smaller number . . • 10 for
example. If you'd like to make the
guessing game more of a challenge,
just use a larger number...say,
500 or higher!

Now, let's get back to our
Program. If it's still in your
V2-200's memory from the last
chapter, terrific. All we nave to
do is change line 10, so that it
says:

10 LET AERND(50)

The new line 10 is saying to your
computer:

"First, label a
compartment in your memory
as A. Now, choose a number
between 1 and 50, and put
it into compartment A."

If you turned your V2-200 off between chapters,
never mind. Just turn back a couple of pages to
find the program, and type the whole thing in
again. Don't. forget CO substitute the new line
10 for the old one!

And there you nave it! A guessing game to play With your
VZ-200,when there's no-one around but the two of you. And
you can play it as often as you like, too...every time you
RUN the program, your electronic friend will think up a
different mystery number for you to guess!

JUST A BIT ABOUT 'FUNCTIONS'

Yep, that word RND sure can make things a lot more
interesting, can't it? Now that weve introduced it you,
we'll tell you what it 181 RND is a "function".

What would [our answer be, if we asked you what a function
is? well, if you're not matnematically minded, you might
Bay that it's an end-of-the-year dance organised by the
social club!
But if you do know a bit about maths, you'll probably reply
(quite correctly) that a function is a sort of 'law'.

54

There are different laws...and they have different
jobs to do. When we apply the 'law' of a function
to a number (or "value"), the law will carry out
it's own special calculation--and return a new
number value as the answer.

RND is just one of the different functions that you can use
with your VZ-200. Now, a lot of these would be useful for
people who want to solve quite advanced mathematical
problems.

Rut of course, not everyone is likely to want to do that!
Are you a passionate maths-hater from way back? If so, just
turn the page quickly, or hide under the desk. Rut
please--not yet! Hear us out for one moment longer.

Like it or not, we're going to tell you about one more
function. Because at some stage, just about everybody (yes,
even you!) will find it useful. It's called son, and we use
it co find the square root of a number.

Let's think of a number...I6 will do. Here's how we
use SOP to find the square root of our number:

PRINT SQR (16)

When we've typed tnis line, the VZ-200 will print the
answer on the next line down:

4

Right, now we'll list the rest of the functions
and their uses. If you understand maths--read
through it. If you don't--go and make a cup of
tea!

A LIST OF NUMERIC FUNCTIONS

Function
	

What it does

ABS (X) Returns the absolute (positive) value of X

SGN DO Returns the sign of the argument
X negative returns — 1
X positive returns + 1
X zero returns 0

SOR (X) Returns the square root of X. X cannot be
negative.

LOG IX) Gives the natural logarithm of X. The value
of the argument must be greater than zero.

EXP (X) Gives you the value of ex. e = 2.71828

INT (X) Gives the greatest integer which is less than
or equal to X.

55

RND (X)

SIN (X)
COS (X)
TAN (X)

ATN (X)

Gives random whole numbers between 1
and X. If X equals zero RND (X) returns
random numbers between 0 and 1, X can-
not be negative.

The argument of the trigonometrical func-
tions is in radians . The range of X is
—9999999 C (Xi .< 9999999.

This gives the result of ARC TANGENT in
RADIANS.

56

Notes

57

Chapter 11
Telling your computer "where to get off'!

The more we discover about computer programming, the more
exciting it gets! But hey--don't you think it's time we
took a bit of a break? After all, everyone has co come up
for air sooner or later!

That's why this chapter, we thought we'd step back onto
familiar groun-d for a while. So relax and take a deep
breath...'cause we're going to learn a bit more about our
old friend "looping!"

"What--again?" you'll complain. "You mean to tell
me there's still something to learn about it?"

There sure is! But before we tell you what you don't know,
let's think back over what you do.

The very first loop we learned co use was the
never-ending, merry-go-round variety...you remember,
the sort that will keep looping until the cows come
home. And if we hadn't shown you now to "put on the
brakes" (using the BREAK command), the cows would have
beaten it home long ago! We also told you about the
STOP statement, which gets the VZ-200 to put on its own
brakes. And, of course, the CONT command--which starts
the merry-go-round spinning once more.

Now, how about the loop we used when writing our
"guessing-game" programs? YeS, that's right--it did
nave an end...eventually! If the first guess you INPUT
didn't succeed, that particular loop let you try, try
again (and again). until you guessed the secret
number! When you did, that was the end of the ride.

But we couldn't tell exactly how many times it would go
around the loop--cause we didn't know how many trys it

OC\--A

would take to guess the right number! r.

Wouldn't it be handy if you could set a limit on the number
of times the merry-go-round will go merrily 'round? Sort of
like giving your VZ-200 a "ticket" for the ride. A ticket
that tells your computer how many loops it must make before
it's "time to get off"!

Hmm...funny you should mention that! As it happens, there
are two ways to make a loop with a fixed end.

58

LOOPS WITH A LIMIT -- USING IF-THEN

Ah, where would we be without the marvellous statement
called /F-THEN? Here's yet another way that it can help us
out. As you know, IF-THEN gets your VZ-200 to make a
"decision° about something. So why not get your computer to
"decide" how many times it has gone around a loop?

we promised to stay on familiar ground this chapter, didn't
we? So, to see how this new trick works, let's try it out
on something we already know--the little program for
working out a 4 times-table (it's the last one in chapter
7).
Type it back into your computer's memory:

5 CLS
10 A=l
20 PRINT A; " X 4 f"
30 PRINT A*4
40 AfA+1
50 GOTO 20

If we r n that program right now, you know exactly what it
would do. (Oh, come on...af course you do!) It will
increas the value of A by 1, each time it goes around the
loop.

Now, suppose we only want to go up to 12 X 9. That's easy!
At the bottom of the program, just type this line:

45 IF As13 THEN END

As you know, line 45 will slot into place between lines 40
and 50. Now, our program looks like this:

5 CLS
10 A=1
20 PRINT A;" X 4 =N;
30 PRINT A*4
40 A=A+1
45 IF A=13 THEN END
50 GOTO 20

Want to see it in action? OK...you know what to do. Just
tell it to RUN. (And prepare to jump up and down with
excitement!)

It works! It works! Thanks to IF-THEN, we've created our
very first loop with an end. And how did we manage it?
Perhaps you've guessed already.

By adding line 45, we got the VZ-200 to "test" the
value of A, each time it changed. IF A was still
smaller than 13, your computer simply made another
trip around the loop. But IF A wasn't smaller than
13 THEN it "decided" to END the loop...and the
program!

59

Computer
Go-Round

Do you see what this program has done? It's given your
computer a ticket for the merry-go-round...one that says
"Go around 12 times...and then get off!"

So much for Method 1. it worked beautifully, didn't
it? In fact, you're probably so impressed that you
just can't wait to hear about Method 2!

Now, no ..don't be impatient! Before we can show you the
second method, we'll have to
teach you three brand new
BASIC statements. And that'll
have to wait until next
chapter...' cause you've done
quite enough for the time
being!

64)

Notes

61

Chapter 12
Still looping (using FOR-TONEXT!)
Do you recognize the BASIC statements in the heading of
this chapter? Probably not...'cause we haven't told you
about them yet!

No, we haven't forgotten what we promised at the end of
chapter II! This chapter, we'll show you that second way of
giving your VZ-200 a "ticket" to make it loop a fixed
number of times. And the new commands we'll be using? You
guessed it--FOR-TO and NEXT!

FIRST OF ALL: FOR-TO

The first thing that the FOR statement says is "mark a
pigeon-hole in your memory with the following".

(For this exercise, we'll name the pigeon-hole
A...but you can choose any letter you like!).

Does chat sound familiar to you? Well, is certainly
should...the good old LET statement does exactly the Same
thing! But that's where the similarity ends.

The LET statement gives your computer only one number, or
value, to store in that compartment... for example:

LET A=7.

The FOR statement, on the other hand, shows the VZ-200 a
whole group of numbers...say, all the numbers from 1 to 12.

Now, you might try writing your FOR statement like
this:

FOR A = 1 2 3 4 5 6 7 8 9 10 11 12

..but please! Don't! It simply won't work. And
even if it did, it really would be a bit tiresome.
Especially if you were using a really large number
group (imagine trying to write a FOR statement for
the numbers from 1 to 1001) No, we've got a better
idea. Wouldn't it be easier to use the word TO, and
write your FOR statement like this?:

FOR A=1 TO 12

Ah, yes--that's a whole lot more sensible.

"Sensible or not...that's not going to work!" some of you
might say. "All of those numbers won't fit into one
compartment, will they?"

If you were one of the smarties who noticed...very
good! You're quite right--it wouldn't work. A
variable can never nave more than one value -- at
least, not at the-same time.

62

➢ut don't panic yet! Here's what FOR Al= TO 12 is really
saying:

"OK, VZ-200--listen closely. I nave 12 numbers that
I wish to score in compartment A. I want you to
change the value of A 12 times...and each time, let
A equal the next number in the group."

For example: say the first value of A is to be 1. The next
time, A will equal 2. And the next time, A will equal 3.
Eacn number, in turn, is stored in compartment A...right up
1[11 Al2!

(Get the picture? It's like asking your
computer to walk up a flight of 12 steps--one
step at a time!)

Next, comes...NEXT!

Ana! Now far the big question. Exactly how do we get the
number in A to change?

We're glad you asked. You see, the FOR-TO statement "opens"
a loop. So, at the end of the loop, we'll need another sort
of statement to "close" it...and send the VZ-200 back to
the beginning to start all over again!

Up until now, the statement we've been using to "close"
loops is GOTO. As you know, it's a very handy statement.
And if we used it at the end of our FOR-TO loop, it'd
certainly send the computer right back to the beginning.
Hang on, though! There's a "but". and it's a big one!
The GOTO statement won't tell the VZ-200 to change the
value of A, will it?

Obviously, we're going to need a new sort of statement. And
as it happens, NEXT fits the bill perfectly!

Here's how we'll use NEXT to close the loop around variable
A:

NEXT A

...And here's what it tells your computer:

"Go back to the FOR-TO at the beginning of the
loop...choose the NEXT value for A...and start
again!"

LIGHTS...CAMERA...ACTION!

Well, now you know the story of FOR-TO-NEXT.
Would you like to see them in action? Yes,
we thought you would! Let's use a brand new
Program to put them through their Paves-

Hmmmm...anybody got any suggestions for a
job to give your computer?

63

Eureka! (We don't have a clue what that word means...but we
do have a bright idea!) Why don't we get the VZ-200 to work
out the 4 times-table up to 4 X 12 again--just as we
learned to do last chapter? Only this time, we'll use the
FOR-TO-NEXT statement instead of IF-THEN.

All agreed? OK--here we go. Type in this program:

5 CLS
10 FOR Ael TO 12
20 PRINT A; 	v X 4 =";
30 PRINT A*4
40 NEXT A
50 END

Now, 	for the big moment! 	(Drum-roll, please!). RUN the
Program...and watch this!

Ta-da! 	If you did everything 	right, your VZ-200 should have
done the 4 times-table up to 4 X 12...just as it did when
we used IF-TNEN!

Feeling pretty impressed? If so, stay tuned for the next
exciting episode (well...the next exciting chapter,
anyway!) Because there's even more to learn about
FOR-TO-NEXT.

54

Notes

55

FORA 1 T012
STEP 2 3

2
1

Chapter 13
Even more about FOR-TO-NEXT!

When we first raised the subject of FOR-TO-NEXT, we'll bet
you never dreamed that it would turn out to be so powerful!

And now, something else to amaze you! By tagging one more
BASIC word on the end, we can get FOR-TO-NEXT co do even
fancier tricks!

Do you ever run up a flight of stairs two steps at a time?
Well, our new word--called STEP--can ask the VZ-200 to do
cne same sort of thing. And do it even better than any
human could! Using STEP, you can order your computer to
climb the stairs three at a time! Or ten at a time! Even
100 at a time, if you like!

Here's an example of how it is used:
FOR As1 TO 12 STEP 2

And here's what it makes your computer do:

Another talent of the STEP instruction: we can use it to
actually write a "backwards"FOR-TO-NEXT loop. That is, one
that uses the highest number first--and works its way down
to the smallest!
Amazing! Here's an example:

FOR A-12 to I STEP -1

Here's what it makes your computer do:

66

A loop that goes to everse? This we've got to see: Type in
this program:

5 CLS
10 FOR A810 TO I STEP -1
20 PRINT A; " GREEN BOTTLES,"
30 PRINT "HANGING ON THE WALL,"
40 PRINT A; " GREEN BOTTLES,"
SO PRINT "HANGING ON THE WALL,"
60 PRINT "AND IF 1 GREEN BOTTLE"
70 PRINT "SHOULD ACCIDENTALLY FALL,"
80 PRINT "THERE'D BE "; A-1 ;" GREEN BOTTLES
90 PRINT "HANGING ON THE WALL!"
100 NEXT A
110 END

Now, just about everyone knows how this song goes! It
starts out with 10 green bottles...and each verse knocks
one bottle off the wall. (It's supposed to be
accidental--but we're not so sure about that!) Every verse
starts out with 1 bottle less than the previous one...and
when all ten bottles have fallen, that's the end of the
song.

A closer look.

We already know what theFOR-TO statement n line 1 will do!
The first value to go into pigeon-hole A will be 10, the
next will be 9...and so on, until Aml.

The next 4 program lines print the current value of A,
followed two lines of the song. (This is done twice).

Lines 60 and 70 tell the watcher that 1 green bottle is
about to fall.

67

Line 80 has several jobs. it:
• Calculates now many bottles will be left if 1 is
subtracted from A; and then...
• Prints the answer to the sum in the middle of a
song line.

Line 100? This "closes" the loop, and sends the program
back to the FOR-TO statement at the beginning -- where it
stores the next value in A.

When the computer has looped around 10 times (and
therefore printed all 10 verses of the song!), it
will drop down to line 110 -- and end it all! (No,
don't worry! We mean that it'll end the program,
nor commit suicide!)

Well, what are we waiting for? Let's RUN it -- and see a
reverse FOR-TO-NEXT loop in action!

On...thar was a bit disappointing! It certainly works. But
hey...don't you think that it Works a bit too well? With
all those lines whizzing up the screen at such a speed,
it's really a bit hard to read the words of the song.

Unfortunately, that's one of the problems with computers.
They do just as they're told—but they sometimes do it so
darn fast, we poor humans simply can't keep up!

To slow this program down, we'll have to get the VZ-200 to
pause occasionally! And to "buy' that extra time, we can
give the VT.s290 something to keep itself busy , .Whne we're
reading the screen!

There is a way! took at the line below:

FOR Tul TO 3000:NEXT T

We know that a FOR-TO statement opens a loop--and a NEXT
statement closes it again. So: the loop above Is an "empty"
one ...because we've no sooner opened it, than we close it
again!)
It doesn't perform any particular function--it merely sends
the V7-200 "tuning up some steps". A whole 3000 of 'em!
Because your computer is so speedy, we need a staircase of
this size to keep it busy for long enough l)

Now, where should we put this "empty loop"? Well, the most
logical place would be after the last line in each verse.
So LIST your program, and let's see if we can find that
spot.

There it is! Line 90 prints "HANGING ON THE WALL',..and
that's the very end of the verse. So we'll add our empty
loop -- the one mentioned above -- on another line (say,
number 95). 111s5 11 make the V0-200 wait a while, before
looping back to print the next verse.

ON? Try RUNning it again, to see if we've helped matters.

An, that's much better! At the end of each verse--while the
V7-200 is madly dashing up that flight of 3000 stairs going

68

nowhere--you get a chance to read the song at leisure!

Very appropriately, a loop that "delays" the V2-209 (or
"stalls for time") like this is called...a delay loop.

Now... a word about "nested FOR-TO-NEXT loops".

Do you think chat sounds terribly technical and confusing?
Boy. nave we got a surprise for you. We've already used
one!

Truly, we have...and only a moment ago tool Our little
"time delay" loop just happens co be a nested loop as well,
(So there you are--they Can't be too difficult. Not if you
managed to use one without even realising))

if we say that something is "nested", we mean that it is
completely inside Something else.

So, have you twigged what we're about to cell you?
Right--a "nested" FOR-TO-THEN loop is one that's
completely inside another FOR-TO-NEXT loop!

/f we tried to draw one, it would probably look a bit like
this:

(Incidentally--a nested FOR-TO-NEXT loop doesn't
necessarily have co be empty. It can have absolutely
anyching...as long as the entire loop is inside another
loop!)

Mystery question: Did you notice something
unusual about our new line, number 95? No?
Well, here it is again...take a closer look.

FOR Tel TO 3000 : NEXT T

69

Mystery answer: Line 95 contains two BASIC
statements! The first is FOR-TO...and the
second is NEXT!
Usually, each of those statements would have
had to go on a line of their own. But yes, you
are allowed to pull a stunt like this one....
as long as the statements are separated by a
colon!

70

Notes

71

Chapter 14
Programs Within Programs!
As clever as your VZ-200 is, there is a limit to it's
wonderful capabilities. (Shock! Horror!) Yes, truly...there
is a limit to the number of program lines that It can
remember at one time. Each line, you see, takes a certain
amount of space in your computer's memory.

And If there's one thing a computer programmer just hates
to do, tt's waste space! (Especially when that space might
he needed for a very, very long program.) Now that you're
well on the way to becoming a fully-fledged computer
programmer, you probably couldn't agree more.

Do you know the best way of wasting space? By repeating
yourself unnecessarily! And occasionally, when you're
typing a program into your VZ-200, you'll notice a hit of
repetition sneaking in.

To find an example, let's turn back co the "10 Green
Bottles" program in chapter 13. What's that you say? You
thought it was pretty nifty? So did we! And yes--it is a
clever program. But it's not quite perfecc...as you'll. see
if you look closely at lines 20, 30, 40 and 50.

Gasp! 20 and 30 are doing exactly the same job as
40 and 50! Now, that's definitely a good example of
line-wasting!

("Ana!" you'll think. "I wonder if they're
leading up to something?")

As a matter of fact, yes--we are! This chapter, we're going
to teach you now to avoid this sort of repetition...using
two new BASIC commands called OOSUB and RETURN.

Close your eyes... think very hard...and try to
remember way back to Chapter 3. Can you recall now
we described a program to you? That's right--we
said that a program is a set of steps, designed to
do a special job.

Now, here's a very interesting [nought. Lines
20 and 30 are actually a set of step!,
too...even though the set is only two lines
long.

Can you see the special job that this pair of steps does?
It tells the VZ-200 to print two lines of the "10 Green
Bottles" song on the screen. (And lines 40 and 50, because
tney contain exactly the same instructions, are really just
lines 20 and 30 typed all over again!)

72

A "mini° set of steps? That's really a sort of
"mini" program!

Hmm...it's a bit wasteful to type the same set of steps
twice. Are you thinking what we're thinking? Maybe we could
nave just one set...or mini-program...and tuck it out of
the way unITI it was needed.
Yes, that sounds like a terrific idea! But there must be a
name for a program within a program...what do you think it
could be? A sub-proifli, perhaps? Well, that's pretty
close! Actually, it's called a "subroutine".

A subroutine is still a part of the main
program--but it's kept separate from the rest.
You can ask your VZ-200 to use a subroutine at
various points of the main program, whenever it
is needed. To do this, we simply need to direct
the the VZ-200 to:

clump to the subroutine, and follow the steps
it contains

..and then—,
edump straight back to the next line of the
main program again!

Oops...we nearly forgot to tell you something, didn't we!
You're probably wondering just how to separate a subroutine
from the main program!
The easiest way to keep any two things from getting mixed
up together, is to put a "barrier" between them. Agreed?
So, to keep your subroutine right out of the way, just give
each of its lines a much hi.her line number than the last
line of the main program. (And that line, of course, is
the one with the END statement!)
Try starting your mini-program all the way down on line
3000. There's really no danger of it getting mixed up with
the main program...because the VZ-200 will always END the
program before it reaches it!

In other words, the END statement on the main
program's final line acts as a barrier (or
safety fence") to keep the subroutine out of
harm's way.

SETTING UP A SUBROUTINE, USING GOSUB AND RETURN.

Getting your computer to jump to a subroutine, and back
again, is no trouble...you only have to ask. There's only
one catch -- you have to ask it right! And this is where we
get use our two new BASIC words -- GOSUB and RETURN.

"GOSUB...is that something like GOTO?"
As a matter of fact, yes! COSH° is really a special sort

of GOTO command -- telling your computer to go to the
beginning of a subroutine. And because it's no use asking
the Vz-200 to go somewhere without telling it where, GOSUB
is always followed by a line number.

73

To send your computer to a subroutine beginning
on line 3000, you'd type:

GOSUB 3000

Maybe you're wondering why we bother with the GOSUB
command at all...when GOTO 3000 would do the job
just as well!
An,.. in the world of programming, there's a reason
for everything. GOTO actually won't work in a case like
this. You see, the GOTO statemWdoesn t warn the VZ-200
that it's being sent to a subroutine! It merely says: "Jump
to line 3000--immediately!"

Being such a co-operative little fellow, your
computer will do exactly that. Without stopping to
notice where it's jumping from! (Oh dear--that'll
cause a bit of bother. How's the VZ-200 going to
find it's way home again?)

Looks like we do need GOSUB after all. This
command is a warning for your VZ-200. It says:
"Look before you leap! I'm sending you to a
subroutine now...make sure you can find your way
back here."

Right...now we know now to send your computer to that
separate little program. And what happens when it reaches
the end? Why, everyone knows it's time to jump back to the
main program. (Don't they?)

Well, er, no -- not quite everyone! You know...and we
know...but don't forget about your computer. As we'lri
mentioned, it doesn't know anything unless you tell it!
Tnat's why you must always end your subroutine with the
RETURNcommand. This is just like saying;

"OK, that's the end of this subroutine. RETURN to
the main program -- to the line after the GOSUB
command that sent you here."

OK! Now that we understand the basic idea of subroutines
(and how to use them), let's try out our new skills by
improving the "10 Green Bottles" program!

A subroutine to do the job of lines 20 and 30 (and lines 40
and 50) would look like this:

3000 PRINT A;" GREEN BOTTLES"
3010 PRINT "HANGING ON THE WALL,"
3020 RETURN

74

When you telt your V0-200 to
RUN the new program, it'll
start off in exactly the came
way. Until it rune into the
new line 20!

main program

75

And if we use it co update our little song program, the
new version wi

	
ook like this:

5 CLS
10 FOR Ao10 TO 1 STEP -1
20 GOSUB 3000
30 GOBUB 3000
40 PR/NT "AND IF 1 GREEN BOTTLE"
50 PRINT "SHOULD ACCIDENTALLY FALL,"
60 PRINT "THERE'S BE "; A-1 ;" GREEN BOTTLES"
70 PRINT "HANGING ON THE WALL!"
100 NEXT A
110 END
3000 PRINT A;" GREEN BOTTLES,"
3010 PRINT "HANGING ON THE WALL,"
3020 RETURN

See how it' going co work? Just to make sure that we've
put you in he picture, we'd like to show you...a picture!

Take 	look ac the diagrams below. (It should make
every hing well, pretty clear!)

Lines 20, 30, 40 and 50 of the old program have
been replaced by just two lines -- a new line
20, and a new line 30. Each of these
replacement lines is much shorter now,
too...each one simply says GOSUB 3000!

Lane 20 sends
the VZ-200 to
subroutine 3000.
Your computer
ti tl soom around
the
subroutine...and
RETURN to the
next line of the
maen program.
!That is, Line

NO.)

C

Line 0 gust happens to
contain another GOSUB
3000 command!reeo the
vz-200 with go straight
down to the subroutine
again?

This time, it'll
RETURN to line
40, ready to
continue with
the rest of the

program

main program

oar's it., folks! Subroutines are very easy to use, aren't
hey? And -- as we've just discovered -- they're also very
cod at preventing space-wasting in programs. (In fact,
whenever the same set of steps crops up over and over
again, a subroutine is worth it's weight in gold!)

76

n better:

What if you find several different
sets of steps that repeat
themselves in a program? Why, 'just
make more subroutines to do their
jobs, too! There's no limit to the
number of subroutines you can use.
(Just be sure to give each one a
different set of line numbers. For
Instance, start one routine on
line 3000, one on line 4000, and
one on line 50001)

Best of all:

Remember what we told you about
"nested" FOR-TO-NEXT loops? If you
do, that's good: 'Cause you can
use the very same idea to make
'nested subroutines"!

EXAMPLE:

You can ask your computer to go
from the main program track to
subroutine 3000. And subroutine
3000 can contain another GOSUO
command...sending the VZ-000 to
subroutine 4000. Yet another GOSVB
command in suhroutinedbdraill
send it to subroutine 5000!

The same COSUB-RETURN rules apply
no matter how many subroutines you
"nest" together:
A RETURN command will Rend the
VZ-200 back to the tInejollowing
the 003118 command-That sent it to
the subroutine!

17

Notes

7S

Chapter 15
Just Stringing You Along...
Boy -- you're really going to love this chapter. And you're
going to love what it can do for your programs, too!
Because right now, we're going to learn a brand.new -- and
very exciting -- type of variable.

We already know that the "pigeon-holes" in the VZ-200's
memory are made especially for storing things. In fact,
we've already tried storing numbers inside them -- with
great success. But gosh...it seems such a pity to use them
for only one purpose.

Have you ever wondered if these compartments could be used
to store other things? Like words...or even phrases? It'd
certainly be handy if they could.

Ahat Now here's some good news: Yes, they can!

it does sound pretty am azing...but it definitely is
possible. Why, tneros even a special name for variables of
this type! They're called strings.

That seems like an odd title -- at first. But when you
really think about it, the name is quite a sensible one:
You see, forming one of these variables is rather like
making a string of beads! And that's easy to to...it's just
a matter of threading a group of beads together.

A string is formed in exactly the same
way -- simply -by "stringing" a whole
bunch df letters, spaces and other
characters! Now, if you do that you
will have formed a string constant.

To form a string variable, we just need
to mark a pigeon-hole with a n 	of
our choice...ready. to 'be have am

ae
string

of characters stored inside it!

pules and regulations
Li
	

most new things we've learned, there are a few rules
th
	

you'll need to know. Don't worry, though -- they're
no 	and to remember!

• A string mustn't be any longer that 255
characters. (And yes, that does include spaces.
Why, you ask? Well, those pigeon-holes
are only so big, you know. If you try to cram a
huge bundle of letters into one of them, it

79

simply won't fit!

• The name chat you give to a string variable
must always end with a dollar sign! (No, this
doesn't mean that strings are very expensive
things! It simply warns your computer that the
pigeon-hole contains a string of characters,
not a number.)

For example: AS, BS, CS and DS are possible
names for strings.

• When you are typing a string into your
V2-200, it must always be "enclosed" in
quotation marks! For example:

A$="EENIE"
B$="MBENIE"
CS=KMINIER
DS="MO"

You can treat these new variables in pretty much the same
way as ordinary variables. Oh -- with one exception!

You can ONLY do 1 maths operation with string
van ables -- and that'sADDITION!

To add strings together, simply give your V2-200 an
instruction like this one...

PRINT AS+18S+C$+DS

...and when RUN, the result will look like this:

EENI EMEENI EMINS EMO

(Oops! Notice how the V2-200 ran all the strings together,
without leaving spaces between each one? If you want
spaces, you'll have to put them inside the quotation marks
When you write your strings.)

By now, you're probably imagining all sorts of wonderful
ways to use this brand new trick! After all -- at the mere
mention of certain variable names, it can make your
computer "speak" whole words and phrases!

itching to try it out? So are we! Let's try and get the
V2-200 to actually "hold a conversation" with anyone who
talks to it!

80

Enter this program;

5 CLS
10 PRINT "HELLO! I'M YOUR VZ-200."
20 PRINT "WHAT'S YOUR NAME";
30 INPUT N$
40 PRINT "HELLO, ";N$
50 PRINT "I'M VERY PLEASED TO MEET YOU."
60 PRINT "WHAT SUBURB DO YOU"
70 PRINT "LIVE IN";
80 INPUT 5$
90 PRINT "DO YOU LIKE LIVING IN"
100 PRINT S$;
110 INPUT A$
120 IF A$="NO" THEN GOTO 150
130 PRINT "GOOD! THERE'S NO PLACE LIKE HOME!"
140 END
150 PRINT "OH DEAR! MAYBE YOU SHOULD MOVE!"
160 END

Now, if you go through this program very slowly, you s ould
be abl to work out what it does all by yourself!

(Oh, don't worry. We know you can do it!)
•

A few hints: Line 20 asks your friend to INPUT
their name. Line 30 "listens" to their
answer...and stores the information in a
pigeon-hole labelled N$. Lines 50, 60 and 70 do
the same sort of thing -- this time, asking for
your friend's suburb and storing it in
pigeon-hole 8$.

Once that information is safely tucked away in the VZ-200's
memory, it can use it to make the "conversation" amazingly
personal. (You might even fool your friend into believing
that your computer really does have a mind of its own!)

A Word of Warning
It's all very well to impress your friends with your
computer's courtesy. But be careful! Let your V2-200 be too
charming, and you could have trouble getting it away from
theml

81

Notes

82

Chapter 16
A New Way of Storing Variables!
Oh, is chat you again? Tremendous...we're really very proud
to see that you're still with us. So proud, in fact, that
we think a celebration is in order! Before we say another
word about computers, there's a little exercise that we'd
like you to do.

Ready for anything? OK...follow these instructions
carefully:

1. Stand up
2. Pat yourself on the back. (Yes, this is
rather awkward...but it can be managed if you
wriggle about a bit.)
3. Throw back your shoulders, smile and shout
"I've made it!"

(On yes --just one warning. Family,
friends and flatmates will find this
sort of benaviour a little
peculiar...but don't let that stop you!
Only another programmer could
understand the significance of it all.)

Doesn't that feel good? And don't you think you've deserved
it? Please don't be modest--it's great to take credit when
it's due. From those first wobbly steps into the world of
computers, you've managed to stay on your feet for 15 whole
chapters of this book!

AND NOW...ON WITH THE SHOW!

Because one thing tends to lead to another, we'll go back
to the hotel reception lobby for this chapter, too. And
what's next on the "things-to-learn" list? Well...last
chapter we talked about a new thing to store in a
pigeonhole. Right now, we'll talk about a new way to store
them.

"Another way? But we already know two ways--using
LET and INPUT. Surely there aren't any more!"

Don't be too sure...just yet! Tne hotel clerk in your
V2-200's memory does have one more filing system...one
that'll definitely come in handy later on.

You see, both LET and INPUT are very, very useful. But
eventually, you might want co store a wnole lot of
information In your computer's memory. (Especially as your

83

programs get longer and more complicated!)
Suppose you wanted co create 5 variables--and put something
different inside each one.

You could do it like this....
LET As5
LET B=4
LET Cs3
LET Da2
LET Eel

....but that would take a long time!

So, let's try something completely different!

...Using just two lines:

DATA 5,4,3,2,1
READ A,B,C,D,E

Urk! That's probably left you rather in the dark! Allow us
to shed a little light on the mystery.

Long ago, we mentioned a very important rule about
variables. Remember this?:

The VZ-200 won't store anything in a memory
pigeon-hole, until we give it a name to mark that
compartment with!

So far, we've always provided a name far a variable before
telling your computer what to store inside it. This time
around, however, things are going to be a little different!

The first line in the pair above contains 5 items (in this
case, they're numbers). Typing this line is like giving
your hotel desk-clerk an armful of parcels--and saying:

"Here--look after these for now. Later on, I'll
cell you where to score each one."

Rmm...those parcels will have to be go somewhere out of the
way. Like up on a shelf, for example!

A line beginning with a DATA statement is
exactly like a "parcel shelf"! It's a place for
things to be kept, while they're waiting to be
put in their place. (By the way--did you notice
the commas on the DATA line? They act as
"dividers"--and we use them co separate items
on the line)

When it's time to take parcels down from the shelf, the
VZ-200 always starts at the left, and works along to the
rignt. Computers prefer to do things in this
order...they're really very fussy people. (Er, we mean
machines!)

Now--for the second of those mysterious lines. The one
beginning with READ.

This line is actually a "list" of
variable names. We want the VZ-209 to
use each name--one by one--to label an
individual memory compartment. Once
again, the commas are there to separate
each item from its neighbour.

When your VZ-200 sees the READ list, it chill:
"On, good. Now I can start sorting out the ma

Past... let's look over the VZ-290's shoulder, and
see exactly how this filing system works!

The name at the very top of the READ list is A. So: your
computer uses that name to label one pigeon-hole. It then
takes the first parcel down from the DATA shelf, and stores
it in compartment Al

Right--now for the second name on the list. This is B--and
your computer will store the second parcel from the shelf
in a pigeon-hole called 8.
An...now, have you guessed what's going into pigeon-hole C?
Exactly--the third parcel! And so it goes, until the last
variable name on the READ list has been used.

See what an efficient system this? The V2-200 will
keep working Its way along the READ list--one name
at a time. And it stores the next parcel from the
DATA shelf into each new compartment it labels.

By the way, you don't have to use every single bundle of
data on the shelf. Suppose, for example, there are 6 items
on your DATA line...and only 5 names on your READ list. The
computer won't mind that at all. It will simply store the
first 5 packages in its memory--and ignore the "leftovers"!

If we had made those two lines into a ZIttre
program, we could then add another tine asking
the V4-200 to

PRINT A;8;C;D;E

..And when we ran our program, here's what
would appear on the screen:

5 4 3 2 I

85

Get the idea? If you'd asked the your computer
to PRINT I40:042;A, we would've seen

I 2 3 4 5

on the screen, instead!

Unfortunately, there's one thing that your computer will
mind. You must make sure that you've got enough bundrarof
data to store in the compartments being named. Like to see
an example? OK--replace the second line of our example with
this one:

20 READ A,B,C,D,E,F

Now, try RUNning it again!

At first, everything will work just fine. Until your
computer gets to the last variable name on the list. It'll
quite obediently label a compartment as F. But when it
tries to take another parcel from the data Shelf...oh dear.
The cupboard is bare! You've named 6 pigeon-holes--and
there were only 5 bundles of DATA. Nothing's left to store
in F.

If something like this happens, your V2-200 will say:
"Hey...how do you expect me to do that? Can't you see that
I'm OUT OF DATA?"

The moral of the story:
Never have more names on your READ line, than
Items on your DATA line!

(If you need to use more than one DATA snelf to store all
your parcels, go right ahead! You can nave as many as you
like.)

Here's another useful piece of information: If you like,
you can put just one variable name (say 0) on the READ
line. Then, you can keep looping the V2-200 back to the
beginning of the program. (How? By using a FOR-TO-NEXT
loop, of course!).

Every time your computer comes across the READ line, it
will replace the parcel ALREADY to D with the NEXT bundle
on the DATA snelf!

And how do you work our how many times the VZ-200 needs to
loop around? Easily! Your computer simply needs to make one
loop for every item on the DATA line.

To prove to you just how useful this new system can be,
we'd like you to type in the following sample program.
But first, let us introduce you to an imaginary friend of
ours -- Mr B. Careful.

86

Now, Mr Careful is a shopkeeper. And like most business
people, he sometimes needs to check whether a customer is
reliable. (That is, whether they can be trusted to pay
their bills!).

This program is designed to do the checking for him! You
see, Mr Careful gives a special "serial number" to every
one of his customers. And "listed" in this program are the
serial numbers of customers with a bad record.

Mr Careful can INPUT any serial number that he wishes to
check...and the computer will tell him whether or not it is
on the "bad list"!

Sounds rather clever, doesn't it? Let's see if it works!

CGS
10 DATA 11067, 12549, 22871, 57824, 86256
20 INPUT "CUSTOMER NUMBER"O
30 FOR Lml TO s
40 READ D
50 IF Debi THEN GOTO 90
60 NEXT L
70 PRINT "THAT NUMBER IS FINE BY ME!"
80 END
90 PRINT "NO! THAT NUMBER IS BAD!"
100 END

Confused? Never mind -- the whole thing is e 	y very
simple to analyse.

Line 5:
Easy enough! It's just giving us a nice, clear
screen to RUN on.

Line 10:
Our DATA snelf! There are 5 items stored here. And
remember, each "package of data" is actually the
serial number of a customer who hasn't paid tn-edr
bi iii

Line 20:
Hey...we haven't encountered a line like this
before! (No, we haven't. Sorry 'bout tnat:77jusr
trying to pull a fast one on you!) This is really
just an ordinary INPUT statement. But we've given
it a little extra "flourish"--by slipping in a line
that reminds the user just what they're supposed to
be INPuTting.

Line 30:
Here's the start of our "reading the data" loop.
Because there are 5 different items on the DATA
line, we'll need to loop around the same number of
times! (We haven't given it the name L for any
special reason, except that L. stands for loop!)

87

Line 40:
We've only just finisned telling you what this one
does! The first time around, the READ line asks the
v2-200 co store the first parcel from the DATA
snelf in a pigeon-hole marked D. The second time
around it stores the second parcel...and so on.

Line 50:
Using dear, faithful IF-THEN, this line puts the
customer number in N to the test. IF it is equal to
the number stored in D, THEN your computer will
GOTO line 90. Line 90 prints a message to inform
you that yes, it is on the •bad number" list! And
straight after this line, comes line 100 -- which
ENDs the program.
Hut if N is not equal to D, the VZ-200 will simply
drop down to the next line of the program...

Line 60:
Here's the NEXT statement to close the loop. It'll
send the computer back to the beginning of the
FOR-TO-NEXT loop. Then it will replace the number
already in D with the second parcel from the DATA
shelf, ready co be compared with N. This line will
keep looping the V2-200 around--until it's made its
5th trip'. And when it has, it's free to go to line
70.

Line 70:
If the your computer has made it this far, then the
number you are testing has passed with flying
colours! This line will print a statement, to tell
you that the number is OK.

Line 80:
This one speaks for itself!

Go anead -- try it for yourself! The first time you RUN the
program, invent an imaginary "customer number" to INPUT.

Does it work? Great! Now, try it again...but this time,
INPUT a number that you know is on Mr R. Careful s bad
list". (Just to be sure that this part works, too!)

88

Notes

89

Chapter 17
A Bit More about DATA & READ...
How'd you like a little rest? Tnought so! After all those
long chapters, we really think chat it's time for something
short, sweet and useful.

So right now, we're going to tell you just one more
(helpful) thing about DATA and READ.

After we'd finished Illflining Mr B. Careful's "cnecking"
program, what do you think happened to those five parcels?
We know that they were all taken down from the DATA shelf.
And we know that they were stored, one by one, in
pigeonhole D. Rut what on earth happened co each parcel
when it was removed from D and replaced by the next?

Good question. We haven't told the VZ-200 co put the
parcels back on the DATA shelf...so just at the moment,
they're nowhere to particular!

if we wanted to "check" another customer, we'll have to
restore the parcels to their original positions on the
shelf. To do this we could run the whole program all over
again. But that would be rather tiresome.

Just a moment -- here's a better idea! We also could learn
a new BASIC word...one that'll restore the parcels, without
having to start all over again!

Brilliant! The new word is called (logically enough)
RESTORE. And to use it in Mr Careful's program, we need to
add these four lines:

72 RESTORE
74 GOTO 5
92 RESTORE
94 GOTO 5

Now, our program looks like this:

5 CLS
10 	DATA 	11067, 	12549, 	22871,
20 INPUT "CUSTOMER NUMBER"())

57824, 	86256

30 FOR Lml TO 5
40 READ D
50 IF DmAt THEN GOTO 90
60 NEXT L
70 PRINT "THAT NUMBER IS FINE BY ME!"

72 RESTORE
74 GOTO 5
80 END
90 PRINT "NO! THAT NUMBER IS BAD!"
92 RESTORE
94 GOTO 5
100 END

90

Guess what it does now! When the computer finds a RESTORE
statement, it will put all the parcels back on the DATA
shelf -- in their original order!. The GOTO command
immediately after the RESTORE line simply says "go to the
beginning of the program again".

And once the computer is back at the start once more, we
can INPUT another number to be tested.

Why do we need two pairs of RESTORE and GOTO lines?
Because if you look carefully at the program,
you'll that it has two possible endings! That's why
we had to slip a RESTORE and a GOTO command in

*After line 70 (the end of the program if the
number being checked is OR), and
•After line 90 (the end of the program if the
number is bad!)

Go anead...try your updated program now!

A little aside:
Did you notice the END statement on lines 80
and 100 of our new program? And did you also
notice that they're not really
necessary...because the program always loops
back to the beginning before it gets to tnem?
You did? Oh, very good. To tell the truth, we
only included them because finishing every
program with END is a good habit. (Even if
sometimes, the statement isn't really needed!)

91

Notes

92

Chapter 18
Music To Your Ears!

Funnily enough, the world's very first musician was someone
that you've already met. (We introduced him at the very
beginning of this book). Yep -- it's our old friend, the
caveman. And the very first musical instrument? That was
the caveman's first invention...the hammer!

Of course, the caveman developed his hammer with only one
purpose in mind: To nit something harder than he could with
his bare hands. (Exactly what ne planned to hit remains a
mystery. It could have been rocks...or wood...or enemy
tribesmen!)

But while he was thumping away with his new creation, he
made yet another discovery.

Every time the hammer hit something, it created...
A SOUND!

Much to his delight, the caveman found that he liked this
"sound". In fact, he liked it so much that he just kept on
making it. Over and over again.

You'll probably agree
that this "tune" wasn't
really destined for the
top of the charts! To
tell the truth, man's
musical future was
looking pretty
bleak...until the people
in the neighbouring
caves complained
(loudly!) that the noise
was BORING)

Luckily, it's hard to keep a good caveman down! Our
prehistoric friend wasn't discouraged -- ne simply began
experimenting once more. And before too long, he'd stumbled
upon another discovery. He found that by whacking different
objects with his hammer, he could vary the sounds he
created!

For example, he discovered that:
Hitting a boulder made...a low sound
Hitting a log made...a medium sound
Hitting a pebble made...a nigh sound
And hitting a melon made...an awful mess
inventors make mistakes)

(All

93

The frequency of each sound (that is, how "high" or how
"low" it was) came to be known as its pitch.

By arranging these sounds (today we call them "notes") in
different patterns, man was able to create a very pleasing
effect. In fact, he was so pleased that he felt these
patterns deserved a special name. He decided to call them
"MUSIC"!

Years...and centuries...and ages rolled by. As time passed,
man discovered even more ways to make his music more
interesting. And here's one of the most important! He
learned to vary not only the pitch of the notes, but the
length of time that each sound lasted fort This is called
the-Bduratiollw of the note.

And thanks to pitch and duration, man was able to arrange
notes in much, much more intricate patterns. Imagine how
proud he was of them! There was only one problem -- some of
these musical designs were so intricate, they were almost
impossible to remember!

Man just hated to waste his masterpieces -- but
unfortunately, he didn't have a good enough memory to
remember his tunes for very long. Eventually, it occurred to
him that to preserve his musical patterns, he'd have to
invent a way of "writing them down".

What a problem! it certainly must have puzzled him
at first! (After all, hoW can you "write" a sound?)

But being a patient species, he persevered...until at last,
he came up with a very bright idea indeed! He decided to
use a special "picture language" to represent different
sounds.

Today, we call this language musical notation! (Think about
it...at some stage, just about everyone has seen a piece of
music "written down" on paper.) If you don't know much
about music, it probably looks like a whole lot of tadpoles
sitting on five telephone wires!

But if you do know something about musical notation, you
know better than that! You'll be able to tell us that those
little shapes aren't tadpoles at all...they're actually
"drawings" of individual musical notes.

And it's not a set of telephone wires that the notes are
sitting on, either! in musical terms, these five lines form
something called a "stave".

So, exactly how does this system work? Quite simply,
really.

The pitch of a note is determined by its
position on the stave,

The duration of a note is determined by me
shape used to represent it!

94

Slowly but surely, man organised his notes into something
he called a musical "scale". This was a series of 8 notes.
Why did he call it that? Simply because each note "climbed"
one step higher than the last one... in exactly the same way
that a person might climb -- or "scale" -- a ladder!

When a musical scale is "sung", it goes like
this:

DO-RE-MI-FA-SO-LA-TI-00

Each note in the scale had its own position on 	stave.
Man gave a name to each of these positions, using a letter
of the alphabet to label each one.

7
Th s "musical scale" forms a sort of basic building block!
We can add scales together by overlapping the last note of
ea h scale. By doing so, we can produce a series of sounds
that climb higher and higher -- or lower or lower.

DO-RE-MI-FA-SO-LA-11-DO-RE-Mr-FA-SO-LA-TI-DO

This "adding" could go on and on, really! So, to avoid
getting lost among so many different notes, man decided to
use one note as a landmark. This way, he'd always know
where he was!

The note that he chose as his landmark is
called Middle C. Any notes that are lower
than Middle C are said to be in the "bass
clef'.
At the beginning of a staff containing
these low notes, you will see a symbol
that looks like this:

All tne other notes -- the ones higher
than Middle C -- are said to be in the
"treble clef". If the notes in a staff
are higher tnan Middle C, the staff will
begin with a symbol like this one:

(What's that you say? This symbol looks a lot more
familiar? Well, that's because it's a whole lot more
common. Most pieces of music that you see will begin with
this "treble" sign!)

By the Lime man reached this stage in his musical
development, his caveman days were millions of years behind
him. And to tell the truth, ne was beginning to feel pretty
smart! So smart, in fact, that he began hunting for ways to
improve his musical scale.

95

To give himself an even bigger range of sounds to choose
from, he slipped more notes between some of the notes
already on the scale. He called these notes "sharps"...and
he placed them one half-step up from existing notes. A note
chat is to be played "sharp" will have the same name as the
main note one half-step below. And it will have the little
symbol next co it.

As you can see, our system of writing music is
pretty efficient. It allows us co think of
almost any sound we like, and write it down on
paper!

Now, this system works just fine for humans! When a
music:sr: wishes to play a tune (that is, a series of
sounds) that's written down on paper, he merely has to look
at:

1. The position of the notes, and
2. Their shape

.,.and he will know exactly which sounds to produce!

Your computer, unfortunately, has a bit of a handicap when
it comes to "reading" music. For obvious reasons! You see,
to look at something we Humans use two special pieces of
equipment -- our eyes. And the V2-200, of course, doesn't
have any! Anyway, even if it could look at the music, the
VZ-200 wouldn't be able to understand our picture writing
system. (Computers don't think that way.)

So, because the V2-200 can't see the song, we'll have to
find a way to describe each note to it!

The easiest way to do this is to use a system of number
codes.

As we've mentioned, there's a pair of things that a
musician needs to know about a note, before he or
she can play it. To describe a certain sound to
your computer, these two things must be
"represented" by a pair of numbers!

The first thing you'll need to tell the VZ-200 is:
The position of the note on the stave (it's pitch)

The VZ-200 can play 31 different notes (or picches)—Plos
a "rest". (That's a short break in the music). In musical
notation, it's represented by a variety of symbols
(different shapes, for rests of different lengths!)

Each of these notes has a code number all it's own. The
entire list of notes, and their code numbers, is shown
on the next page:

1/2 	1/8
1/4

96

Code: Name of note: 	Code: Name of note:

0 	rest
1 	Al
2 	A#1
3 	81
4 	Cl

C#1
8 	D1
7 	D#1
8 	El
9 	Fl
10 	F#1
11 	G1
12 	G#1
13 	A2
14 	A#2
15 	82

16
	

C2
17
	

C#2
18
	

D2
19
	

D#2
20
	

E2
21
	

F2
22
	

F#2
23
	

G2
24
	

G#2
25
	

A3
26
	

A#3
27
	

B3
28
	

C3
29
	

C#3
30
	

D3
31
	

D#3

The n tee on this aide of the
table describe notes below
Middi C. So we'd use
for a piece of music
begin ing with a bees clef

The notes on this side of the
table describe notes above
Middle C -- and we'll use
them for mu8ic beginning With

a tsa2ga _ aiSf

T describe the pitch of a nose to your computer, just look
the code number that corresponds to it. This number will

b the first half of your pair.

Now, you've "described" [die note's position on clic
stave. Wnat e I so does your computer need to know
about the sound?

Right) It muse also be told

The shape of the note its duration)

..so your computer will know now tog the note should
last!
As you might have guessed, there's a special code number
for each different snape of note:

97

DURATION
A note shaped Lasts for this

Code: 	like this: 	length of time:

1

Ye of a note

2
	 1/4 of a note

3
	 he of a note

4
	

en 	1/2 of a note

5
	 3/4 of a note

6
	 1 full note

J. 	1'/2 notes

a
	 2 notes

3 notes

This number will be the second half of your description.

Well, there you have your pair of instructions. Together,
they form a description of a single note.

Not so hard, is it? Simply by using the two tables
above, you should be able to "describe" pieces of
written music to your computer! Now, we certainly
don't suggest that you try to teach it to play
Beethoven's 5th Symphony! (the VZ-200 isn't that
cultured!) Please, stick to simple little tunes.
They're really just as much fun! A very good place
to find them is in a children's song book.

To "translate" a piece of written music into a language
that your computer can understand, you have to:

1. Decide where each note is on the stave, and look
up the code number of that position on the "pitch"
cable.
2. Decide what shape each note is, and look up the
code number for that shape on the "duration" table.

The piece of music you'll describe to your computer --
instead of a series of different snaped notes with

98

different positions on the stave -- will be a series of
different code-number pairs!

Oh, yes! We almost forgot something very important! All
those number pairs won't mean a thing to the V2-200...until
you tell it just what they are for! So, in front of every
pair, we'll need to put some sort of signpost. One that
tells your computer "These two numbers represent a musical
note. Please play it for me!"

To do this, we must learn yet another BASIC
word. And what's it called? You guessed
it...SOUND!

The SOUND command goes in front of every pair of code
numbers.

Here's an example:

The code for th
and the code fo
so to describe
SOUND 28,2

ote's pitch is 28,
e shape is 2 --
we'd say

Th code for this note's pitch is 23,
and the code for i a shape is 6 --
so to describe it, we'd say
SOUND 23,6

The position of the note's "tadpole tail" isn't
important.. it can be hanging down below the note, or
standing straight up above it. what does matter is iNether
note is "filled in" or "hollow"; whether there are any
little "flags" hanging on its tail; or whether it has a dot
right next to it.

99

Teaching your VZ-200 to sing.

Now chat you know now to "describe"
Individual notes to the "describe""
there'll be no stopping Y°0! To
celebrate your new-found ability, let's
try something really exciting. Let's
cry to teach your computer to "sing us
a songll!

Hmmm...We'd better choose something simple. How about a
good old nursery rhyme? "Twinkle, Twinkle Little Star"
would be ideal.

Now, what must we do before your computer can perform for
us? That's right...we'll nave to give it a description of
every single note in the song! To do it, we'll use:

e star, How 1 	won-der

what you are! Up a-bove the world so high,

Like a diamond in the sky. Twinkle, twin-kle,

wonder what you are! t-tie 	ste

If you count each little note, you'll find that there are
42 of them in this tune. Good heavens! Does that mean that
we have to use 4 2 CONN'S commands in our program?!

No, calm down...there's an easy way out of this. All those
SOUND c 	aren't necessary at all. Instead, we can use
a really clever clever trick -- one that we've already taught you!

Nave you guessed which clover trick we mean? (After

all, we've. learnedSs many)! Here'sclue -- there
are two MIN statements Involved (and they sort of
go hand-in-hand!). When we first mentioned them, we
said that thcfre van: useful for storinIpa lot of
information in your V/ 2(10'5 memory.

—Prom Sounds..to Songs!—

100

If you guessed DATA and READ, you got it right first try!
These two statements will certainly save us a lot of
unnecessary work. (Because we sure have got a lot of
information to store!). Like toree how? OK -- very
carefully, enter the program below.

5 CLS
10 DATA 21,4,21,4.28,4,28,4,10,4,30,4,28,6,20,4,26,4,25,4
20 DATA 25,4,23,4.23,4,21,6,28,4,28,4,26,4,25,4,25,4,25,4,23,6
30 DATA 28,4,28,4,26,4,26,4,25,4,25,4,23,6.21,4,21,4,28,4,28,4
40 DATA 30,4,30,4.28,6,26,4,26,4,25,4,25.4,23,4,23,4,21,6
50 FOR 1,01 TO 42
60 READ P,D:SOUND P,D:NEXT L:FFID

)one that? Good. Now -- before you have a chance to feel
'onfused -- we'll explain exactly what this terrifying
jumble of numbers is (and how it works!)!

Analysing the program

Lines 10, 20, 30 and 40:
As you can see from the DATA statements at the
beginning, we're using these four lines as "storage
shelves". (we need four of them...because we've got so
much DATA to store!)
And exactly what are we storing? pairs of code numbers!
Each pair is a description of one note of our song.
(The first number in the pair describes the pitch of
the note. The second number describes the duration.)
Just count them for yourself...you'll find that
altogether, there are 42 pairs on our DATA shelves.

For example:

•••••• /I sax Iwo, /wax 1"\
10 DATA 21,4 	21,4 , 28,4 	P8,4 , 10,4

...and so on.

Sol Me want the v2-200 to READ these numbers -- two by
two -- and put each one into a variable pigeon-hole.
Once our two code numbers are safely stored, we can use
just one SOUND command, followed by the pair of

variable names:

The computer will play the note described by whatever
two numbers happen to be in the pigeon-holes!

Line 50
our "counting" loop! Because there are 42 pairs of code
numbers, we must ask the 22-200 to loop around 42
times. (Each trip around the loop will replace the
numbers already in the pigeon-holes, with the next pair
from the DATA shelves!)

101

Line 50
Aha..this is one of those clever lines containing more
than one command. Remember, it's OK to do this -- as
long as each one is separated by a colon!

First command: Here's our READ statement. it will store
the code numbers, pair by pair, in two pigeon-holes.
The first one is named P (this is where the pitch code
goes); and the second one is named D (the duration code
is stored here!).

Second command: Asks the computer to play the note
described by P and D.

Third command: Sends the VZ-200 looping back to store
the next two code numbers in P and D.

Fourth (and last!) command: ENDS the song when the
VZ-200 has made its 42nd loop.

Rave you finished typing the program into your VZ-200?
Well, it would be a good idea to LIST it -- just to be
sure tnat you've,got every single number right. ('Cause if
you haven't, you might hear your computer sing a bit "off
key"!)

Everything perfect? Great! And now, the big moment
has arrived...it's time to RUN the program.

Ahh...isn't that wonderful? If you think it deserves a
standing ovation, go right ahead! And if you'd like an
encore, simply RUN the whole thing all over again!

Now, for an interesting (although totally
useless) piece of-itilfamationt
Your VZ-200 has just achievja more than you
could ever imagine. Not only has it played you
a song...but it has played you a song written
by a very, very famous composer!

Yen...believe zt or not, "Twinkle, Twinkle
Little Star` was composed by none other than
Mozart!

102

Chapter 19
Great fun with Graphics!

Will this little computer of yours eve
cease to amaze us with its abilities? It
seems that for every incredible talent we
learn about, there's another just waiting to
be discovered.

So, hang onto your hats...'cause here we go again] This
chapter, (believe it or not) we'll unearth your VZ-200's
hidden artistic ability!

Now, don't get us wrong. If computers had been around in
the days of Leonardo da vinci, the great man wouldn't
really have had much to worry about! We are going to learn
how to "draw" on your VZ-200's screen. But don't expect to
produce another Mona Lisa!

The art of creating pictures or patterns with your computer
goes by the odd name of "computer' graphics". Mastering the
art takes time, and patience. But boy -- it sure is fun!

Your computer has 2 different "modes" that it can be in to
produce graphics. The first is plain old Mode (0) -- and
your VZ-200 enters it just as soon as you turn it on!

Mode (0) is the one we use for putting keyboard characters
on the screen.

And what, exactly, are "keybord characters"? Quite simply,
they're any character (or command) that you can find on
the VZ-200's keyboard! Including those funny little shapes
called "graphics characters"!

These different "graphics characters" are rather like
tiles...the sort you might see on a bathroom wall! Each oe
has a different design (there are 15 of them, altogether).

n

By arranging the tiles in patterns on the screen, we can
create...a mosaic! (well, sort of!)

Unfortunately, the tiles (or "picture building blocks", if
you like) are rather, well, large and lumpy. Which means
that whatever pictures we create with them will be large

and lumpy, too!

As we said, "computer graphics" seems a rather
strange name. Or does it? If you look very closely
at the ward ra hies, you just might find another
word lurking in there. one which describes the
whole idea very well indeed!

Give up? OK -- the word is graph. And it's a very useful
description, because your VZ-200's screen is actually

ided up into an imaginary graph!

103

In Mode (0), the graph is 44 blocks wide and 32
blocks deep

One keyboard character takes up 9 of these blocks...and
that's why we can only produce rather "coarse" designs in
text mode.
Wouldn't it be lovely if we could divide the screen up into
much smaller blocks? That way, we could create patterns
that weren't quite so clumsy!

Yes, it would be lovely. And yes, we can do it! It's just a
matter of changing the VZ-209 over to our second
mode...Mode (1)!

Easier done than said! Just type MODE (1) and
press RETURN

in MODE (1), the l a 	n is 128 blocks wide
and 6 blocks deep...which is a whole of 	ner!

When you're in MODE (1), things work rather differently!
For starters, we can't type any character from the keyboard
onto the screen!

"That's sillyl" you complain. "If I Can't put
anything onto the screen, what use is this Mode
in the first place?!"

Now, now...calm down. We didn't say you can't use the
screen -- we just said you can't use the text characters;

Instead, when we want to put something onto the screen,
we'll use another BASIC command. This time, it's one called
SET.

SET asks your computer to "colour in" just one
of those little blocks in the graph.

Each block has it's very own position on the screen. So,
before we can tell the VZ-209 exactly which dot to SET,
we'll have to give it some "co-ordinates".

"Co-ordinates? Help! This is getting a bit too
technical!"

Please, don't let chat term scare you off! 'Cause you're
probably more familiar with co-ordinates than you realise.
Just stop for a moment, and think about the way you look
something up in a street, directory. There's certainly
nothing tricky about that, is there? All you have to do is
look up the name of whatever you're trying to locate in the
Index. Next to the name, you'll see a pair of figures
(usually, one is a letter and one is a number).

Like your VZ-200's screen, most road maps are divided up
into a graph...with one set of lines running horizontally,
and one running vertically. One of that pair of figures
will be the name of a horizontal line; and one will be the
name of a vertical line. To find your target, all you have

194

3CC me

to do is trace along those two lines. And at the spot
where those two lines collide? Sure enough, there's the
street you were looking for!

Now, listen closely...those two figures were actually a
pair of co-ordinates!

And SETting a point on your computer's screen is really no
more difficult! You simply need to stype SET...and then
give your computer a pair of co-ordinates! The first one
will be the name of a vertical line in the graph (and it
can be called anything from 0 to 127). And of course, the
next one will be the name of a horizontal graph line! (It's
name can be any number from 0 to 63.)

What if you want to get rid of a block that you've coloured
in using SET? No problemi-We can use another BASIC
statement -- one that's the exact opposite of SET!

It's called RESET, and you need to follow this command With
the same co-ordinates that you used to SET the block with!

But gosh...SETting just one little block at a time is a bit
tedious! It's going to take us hours (and lots of SET
commands) to colour in a decent area of the screen, Isn't
it?

Well, actually, it isn't! We can use a very neat little
trick to save ourselves all that tame and effort.

To tell the truth, this trick isn't even a new one.
We've used something like it before...when we
taught the VZ-200 to "sing" us a song!

Once again, we'll use just one SET command...followed by
two variables. In the first variable pigeon-hole (let's
call it V), we'll Store a VERTICAL CO-ORDINATE. And in the
second pigeon-hole? That's right -- we'll use it to store a
SOR/ZONTAL CO-ORDINATE! (Let's call this one H.)

Want to see how it works? OK...type in this program.

5 CLS
10 MODE (1)
20 FOR Vs0 TO 127
30 FOR 0=0 TO 63
40 SETti•g)
50 NEXT H
60 NEXT V

Analysing the program

Line 10 puts us in the right Mode (that's Mode (11!)

Line 20 is the beginning of a FOR-TO loop. Every time
arounTIT the value of V will increase by 1.

On line 30, we open another FOR-TO loop! Like the first
loop, at will increase the value of 11 by 1 on each "trip"!

105

Line 40 -- and here's our SET command. It will SET the
point described by whichever co-ordinates are stored in
the pigeon-holes.

Line 50 says NEXT H...and of course, it closes one of our
FOR-TO loops. Remember, the H loo is "nested' inside the V
loop...so we MUS close this one first! When the computer
finds this line, it will zoom back to line 30 -- the start
of this particular FOR-TO loop -- and increase H by 1.

The V2-200 will keep looping around until the value of 63
is stored in H. Then it will drop down to:

Line 60 -- which says NEXT V. This marks the end of our
"outer" loop. So the computer will zoom right back to the
beginning of this loop (that's line 20)...and increase the
value of V by 1!

That's it! Are you ready to try it out? Good...jUSt type
RUN.

Goodness! Look at that -- the V2-200 nas
started to "paint" it's entire screen: (Be
patient, though...it'll take quite a long time
to finish It')

Want to get rid of the "paint-job"? It's easy enough to do!
When your computer has finished, just change line 40 to
Say

RESET V,H
When you run this updated program, you should see the
VZ-200 wipe offthe paint off the screen!

106

Making Rainbows!
(It's not called a "colour computer'

for nothing!)
Something about your VZ-200 has probably been puzzling you,
ever since you met it. And that "something" is the row of
coloured "markers" on the keyboard! (Do you see them?
They're above the first eight keys in the very top row.)

The marker above the key that we use to type 1, is
green. Above the 2 key is 	 llow, and above the 3
key is blue. Next comes re , then buff, then 2yan
(that's another name for-light blue!), then
magenta...right up CO the 8 key, which has an
orange marker above it.

Yes, they do look very pretty. But they're certainly not
there for decoration alone!

The number on each key just happens to be the code for that
particular colour. We use these code numbers, together with
a brand new BASIC statement (now, be patient -- we'll learn
what it Is in a moment), to produce colours on your
VZ-200's screen!

By now, you've almost certainly noticed how
logical the names of most BASIL commands are!
In fact, we hardly need to tell you what our
new statement is called. Surprise,
surprise...its name is COLOR!

Rather like the SOUND statement, COLOR is always followed
by a pair of code numbers.

• The first number describes the foreground
colour of the screen, and
• The second number describes the background
colour.

Remember the two different "Modes" we told you about? Well,
when it comes to colour, each Mode has a slightly different
set of rules!

MODE (0)

In this mode, you have a choice of two different background
colours. The first one is GREEN. And when it's being used
as a background colour, it has a special code number -- 0.
(We're all very used to seeing a green screen...' cause the
VZ-200 automatically chooses this colour whenever you turn
it on!)

For example, to tell your computer that you wanted the
screen to have a green background, and a blue foreground,
you would use a command like this:

COLOR 3 , 0

107

In this case, 3 is the code for blue...so it comes first.
The (background) code for green is 0...so it's the second
number in the pair. (By the way -- did you notice that we
use a comma to separate each code number?)

There is an alternative, though. The second choice for
background colour is ORANGE...and its code number is 1.
Hmmm...a bit of variety might be rather nice! Let's try it
out -- using our new COLOR command.
Oddly enou

g
h:

Because were only worrying about background colour for the
moment, we can leave out the first (foreground) code
number...and just say

COLOR 1 RETURN
(Of course, the space where the foreground colour code goes
is empty. But we STILL need to type the comma that would
usually follow it! This cella your computer that you're
drirTng it a code for the background colour only.)

Are you sure that you're ready for this? Even
though it's so simple, this is probably the
most spectacular thing we've tried yet! Now, if
you think you can stand the excitement, try
typing COLOR, I.

Kapow! Have you ever seen anything so orange? We warned you
that it was quite a change! And switching back to familiar
old green is just as easy, coo. Simply type COLOR, 0. . . and
there it is!

Ah, isn't power a marvellous thing? Let's get
smarter still...and try bringing some foreground
colour into the picture as well! How about a red
foreground, and a green background?

Agreed? Right -- just type:

COLOR 4,0

"Hey! I see the green...but where's the red? It
didn't work!"

Oh, come now...would we give you a "dud" command? Of course
not! As a matter of fact, it did work. There's a very good
reason why you can't see any foreground colour. And the
reason is that there's nothing on your screen but text.

The ONLY keyboard characters that CAN change
colour, are the GRAPHICS CHARACTERS!

Just cry typing in some graphics characters...you'll find
that they're red as can be!

MODE 1

In this mode, your colour choice isa bit more limited.
(Sorry 'bout that -- you can't have everything!)

Your background colour Can be either GREEN (and its code
number is still 0) or BUFF !code number 1).

108

WK Ley- 1 Ileoreete eaaelera

If you choose a green
background, you can
only use this half of the
VZ-200's colour range...

...and if you choose
a buff background, you
must stick to this half
of the colour range!

Now, we'd nate to state the obvious! Rut just in case,
there's one thing we'd better point out:

TO get the COLOR statement to work, you must have a
colour TV!

109

Chapter 20
Our Very Last Words!
And now, as the sun sinks slowly in the west (or whatever
usually goes with a happy ending!), we draw our little book
to a close.

Have you enjoyed your first little foray into the world of
computers? We certainly hope so...because we sure nave
enjoyed showing you the way.

And what a long, long way it's been! Ever since that
fateful moment when you first opened this book, we've been
meeting cnallenges and caking them in our stride.

For old time's sake, let's look back at some of the hurdles
we've managed to clear:

•"what? You expect me to use this computer? I don't
even know what the darn thing is!"

For some of you, this was probably one of the
biggest worries!

•The computer/human language barrier.
Do you realise that you are now "bi-lingual"?
You can now communicate -- almost fluently -
In BASIC! (Truly! Just tnink of all. the words
you've learned.)

•Tnat big, bad thing. called "computer programming".
Remember the first time we mentioned this one?
It probably scared most of you silly. And yet
here you are, ready to start writing your own
programs!

Whew! They were biggies—and that's just a few of them! (In
fact, after so much practice at clearing nurdles you're
probably ready for the Olympics!)

The world of computers is very wide indeed. Far too wide to
fit into a nutshell (or into one little book!). We could
never nave hoped to cram it all into just 114 pages!

What we could hope to do was provide you with a basic
knowledge of computers in general--and the VZ-200 in
particular.We want you to be well-equipped to continue your
developement as a programmer. And if this manual has
achieved that, at least, we couldn't be happier!

Remember that a good, strong friendship costs
nothing...except, of course, TIME. So to become really well
acquainted with your VZ-200, be prepared to meet the
expense! Take time to experiment...time to practise...and
time to play games. (We promise you--It'll be worth the

effort!

119

And now...a last piece of fatherly (er, or motherly?)
advice. If ever you're in trouble, never be afraid to GO
BACK TO THE BASICS! Is something going wrong? Anything at
all? Just come back to this little manual.

We'll always be right here--ready co explain it all over
again!

Also: don't be afraid to experiment! Trial-and-error is one
of bile very best ways to learn...and you can't possibly
damage your VZ-200 by trying your ideas on it!

So! Goodbye for now...and GOOD LUCK!

111

-Appendix A
How to make your VZ-200 love you!
It's not hard...really it's not. Just read the little hints
below. They're very good advice...and if you take it, your
computer will thank you for it!

*Handle with care)
Being dropped is a rather traumatic experience for the
VZ-200. So please, don't bash it, bump it, or use it co
prop the door open! You wouldn't work too well if somebody
did that to you--and neither will your computer.

Heat bothers your computer, too. Be careful not to leave
your VZ-200 on the window-sill, the patio, or anywhere the
sun is strong. No, it won't get sunburnc...hut it will get
sick.

*There's no place like home...
...and to your computer, 'home" is the place (a safe one,
naturally) where you put it when you've finished using it!
If you leave it connected to the power point all the time,
the VZ-200 will get rather not and botnered.

*A little etiquette, please!
Unlike a human, the VZ-200 won't mind if you eat in front
of it. But please -- remember your table manners! 'Cause
your computer will be offended if you slop orange juice,
and sprinkle crumbs, all over its keyboard! Really, i's a
good idea to keep food and drink away from the VZ-200.

t

(Just to be on the safe side.)

*Choose a safe spot.
TE you were looking for a place to set up your VZ-200, you
certainly wouldn't choose the middle of a busy highway!
Unfortunately, some areas in most. homes can be almost as
hazardous! So, when you settle down for a long session with
your computer, try co pick a spot that's out of everyone's
way. (Believe us, there's nothing more frustrating than
having someone trip over the power cord!)

*Don't play doctor!
If you were sick, would you let one of your friends operate
on you? No -- we didn't think so. When humans get sick, we
go to a people-doctor...and when computers get sick, they
need co go to a computer-doctor! So, if your VZ-200 isn't
working properly (and you're sure that it's not because of
something you're doing wrong), gust bring is along CO a
Dick Smith store or dealer. One of our very capable
computer-doctors will soon nave it back in action. Please
-- don't try to perform any "operations" all by youk- ifq-

112

-Appendix B
The BASIC words we've learned
Chapter 4

quotes)
LIST 	RUN
CLS 	NEW

CHAPTER 12

PRINT 	(used with
GOTO 	END
BREAK 	CONT

FOR-TO 	NEXT

CHAPTER 13

Chapter 5 STEP

PRINT 	(used thout quotes)
CHAPTER 14

GOSUB 	RETURN
CHAPTER 6

LET CHAPTER 16

➢ATA 	READ
CHAPTER 7

INPUT CHAPTER 11

RESTORE
CHAPTER 8

IF-THEN 	ELSE CHAPTER 18

SOUND
CHAPTER 10

RND 	SCR

113

Append C
Reserved words
When it comes to labelling variable pigeon-holes, these
words are a NO-NO! The VZ-200 has "reserved" them for
special purposes...and if you try to use them for something
else, you'll cause confusion.

REMEMBER: You mustn't use:

• Any word on the reserved list, or

• Any word whose first two characters are the
same as the first two chinCreTs.6T a reserved
word!

(Why? Because the VZ-200 doesn't look past those first two
characters of a variable name. To your computer, DATA and
DAVID are the same name!)

ABS AND ASC ATN

CHR$ CLOAD CGS COLOR CONT COPY COS CRUN CSAVE

DATA DIM

ELSE END EXP

FOR

GOSUB GOTO

IF 1NKEY$ INP INPUT INT

LEFT$ LEN LET LIST LOG LEIS? LPRINT

MODE MID$

NEW NEXT NOT

OR OUT

PEEK POKE POINT PRINT

READ Rem RESET RESTORE RETURN RND RUN

SET SGN SOUND SIN SOR STEP STOP STR$

TAB TAN TO THEN

USING USR

114

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118

